{"title":"Beta 回归模型中新的偏差校正估计器的性能:蒙特卡罗研究","authors":"Yasin Asar","doi":"10.47112/neufmbd.2023.11","DOIUrl":null,"url":null,"abstract":"Beta regresyon modelinde regresyon parametrelerini elde etmek için birincil yaklaşım, maksimum olabilirlik tahmin tekniğinin kullanılmasıdır. Bununla birlikte, beta regresyon modelinde çoklu bağlantının maksimum olabilirlik tahmin edicisinin varyansı üzerinde negatif bir etkiye sahip olduğu, yani maksimum olabilirlik tahmin edicisinin varyansının şişirildiği kabul edilmektedir. Bu konuyu ele almak için, çoklu bağlantı sorununu çözmek için yeni bir yanı düzeltilmiş tahmin edici tanıtılmıştır. Bu yeni tahmin edicinin etkinliği, bir Monte Carlo simülasyon deneyi kullanılarak sayısal bir araştırma yoluyla değerlendirilmiştir. Sonuçlar, önerilen tahmin edicinin diğer rakip tahmin edicilere kıyasla hem hata kareler ortalaması hem de karesel yan değerleri bakımından önemli iyileştirmeler sağladığını göstermektedir.","PeriodicalId":184558,"journal":{"name":"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi","volume":"113 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of A New Bias Corrected Estimator in Beta Regression Model: A Monte Carlo Study\",\"authors\":\"Yasin Asar\",\"doi\":\"10.47112/neufmbd.2023.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beta regresyon modelinde regresyon parametrelerini elde etmek için birincil yaklaşım, maksimum olabilirlik tahmin tekniğinin kullanılmasıdır. Bununla birlikte, beta regresyon modelinde çoklu bağlantının maksimum olabilirlik tahmin edicisinin varyansı üzerinde negatif bir etkiye sahip olduğu, yani maksimum olabilirlik tahmin edicisinin varyansının şişirildiği kabul edilmektedir. Bu konuyu ele almak için, çoklu bağlantı sorununu çözmek için yeni bir yanı düzeltilmiş tahmin edici tanıtılmıştır. Bu yeni tahmin edicinin etkinliği, bir Monte Carlo simülasyon deneyi kullanılarak sayısal bir araştırma yoluyla değerlendirilmiştir. Sonuçlar, önerilen tahmin edicinin diğer rakip tahmin edicilere kıyasla hem hata kareler ortalaması hem de karesel yan değerleri bakımından önemli iyileştirmeler sağladığını göstermektedir.\",\"PeriodicalId\":184558,\"journal\":{\"name\":\"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi\",\"volume\":\"113 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47112/neufmbd.2023.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47112/neufmbd.2023.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of A New Bias Corrected Estimator in Beta Regression Model: A Monte Carlo Study
Beta regresyon modelinde regresyon parametrelerini elde etmek için birincil yaklaşım, maksimum olabilirlik tahmin tekniğinin kullanılmasıdır. Bununla birlikte, beta regresyon modelinde çoklu bağlantının maksimum olabilirlik tahmin edicisinin varyansı üzerinde negatif bir etkiye sahip olduğu, yani maksimum olabilirlik tahmin edicisinin varyansının şişirildiği kabul edilmektedir. Bu konuyu ele almak için, çoklu bağlantı sorununu çözmek için yeni bir yanı düzeltilmiş tahmin edici tanıtılmıştır. Bu yeni tahmin edicinin etkinliği, bir Monte Carlo simülasyon deneyi kullanılarak sayısal bir araştırma yoluyla değerlendirilmiştir. Sonuçlar, önerilen tahmin edicinin diğer rakip tahmin edicilere kıyasla hem hata kareler ortalaması hem de karesel yan değerleri bakımından önemli iyileştirmeler sağladığını göstermektedir.