求 k Є {2; 3} 时约翰逊图 J(n, k) 的固定数

James Della-Giustina
{"title":"求 k Є {2; 3} 时约翰逊图 J(n, k) 的固定数","authors":"James Della-Giustina","doi":"10.33697/ajur.2023.097","DOIUrl":null,"url":null,"abstract":"The graph invariant, aptly named the fixing number, is the smallest number of vertices that, when fixed, eliminate all non-trivial automorphisms (or symmetries) of a graph. Although many graphs have established fixing numbers, Johnson graphs, a family of graphs related to the graph isomorphism problem, have only partially classified fixing numbers. By examining specific orbit sizes of the automorphism group of Johnson graphs and classifying the subsequent remaining subgroups of the automorphism group after iteratively fixing vertices, we provide exact minimal sequences of fixed vertices, in turn establishing the fixing number of infinitely many Johnson graphs. KEYWORDS: Graph Automorphism Groups; Symmetry Breaking; Fixing Number; Determining Number; Johnson Graphs; Kneser Graphs; Graph Invariants; Permutation Groups; Minimal Sized Bases.","PeriodicalId":72177,"journal":{"name":"American journal of undergraduate research","volume":"119 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding the Fixing Number of Johnson Graphs J(n, k) for k Є {2; 3}\",\"authors\":\"James Della-Giustina\",\"doi\":\"10.33697/ajur.2023.097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The graph invariant, aptly named the fixing number, is the smallest number of vertices that, when fixed, eliminate all non-trivial automorphisms (or symmetries) of a graph. Although many graphs have established fixing numbers, Johnson graphs, a family of graphs related to the graph isomorphism problem, have only partially classified fixing numbers. By examining specific orbit sizes of the automorphism group of Johnson graphs and classifying the subsequent remaining subgroups of the automorphism group after iteratively fixing vertices, we provide exact minimal sequences of fixed vertices, in turn establishing the fixing number of infinitely many Johnson graphs. KEYWORDS: Graph Automorphism Groups; Symmetry Breaking; Fixing Number; Determining Number; Johnson Graphs; Kneser Graphs; Graph Invariants; Permutation Groups; Minimal Sized Bases.\",\"PeriodicalId\":72177,\"journal\":{\"name\":\"American journal of undergraduate research\",\"volume\":\"119 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of undergraduate research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33697/ajur.2023.097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of undergraduate research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33697/ajur.2023.097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图不变式被恰如其分地命名为固定数,它是指当固定时,消除图的所有非三维自动变形(或对称性)的顶点的最小数目。虽然很多图都有固定数,但与图同构问题相关的图族--约翰逊图却只对固定数进行了部分分类。通过研究约翰逊图自形群的特定轨道大小,并对迭代固定顶点后的自形群剩余子群进行分类,我们提供了精确的最小固定顶点序列,进而确定了无限多约翰逊图的固定数。关键词: 图自形群;对称性破坏;固定数;确定数;约翰逊图;克内瑟图;图不变式;置换群;最小大小基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding the Fixing Number of Johnson Graphs J(n, k) for k Є {2; 3}
The graph invariant, aptly named the fixing number, is the smallest number of vertices that, when fixed, eliminate all non-trivial automorphisms (or symmetries) of a graph. Although many graphs have established fixing numbers, Johnson graphs, a family of graphs related to the graph isomorphism problem, have only partially classified fixing numbers. By examining specific orbit sizes of the automorphism group of Johnson graphs and classifying the subsequent remaining subgroups of the automorphism group after iteratively fixing vertices, we provide exact minimal sequences of fixed vertices, in turn establishing the fixing number of infinitely many Johnson graphs. KEYWORDS: Graph Automorphism Groups; Symmetry Breaking; Fixing Number; Determining Number; Johnson Graphs; Kneser Graphs; Graph Invariants; Permutation Groups; Minimal Sized Bases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信