基于 SMLR、ANN、弹性网和 LASSO 模型的北阿坎德邦水稻作物产量预测比较分析

IF 0.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
MAUSAM Pub Date : 2023-12-31 DOI:10.54302/mausam.v75i1.3576
P. Setiya, A. Nain, Anurag Satpathi
{"title":"基于 SMLR、ANN、弹性网和 LASSO 模型的北阿坎德邦水稻作物产量预测比较分析","authors":"P. Setiya, A. Nain, Anurag Satpathi","doi":"10.54302/mausam.v75i1.3576","DOIUrl":null,"url":null,"abstract":"The study was aimed to develop the yield forecast model for rice crop yield. Four different techniques i.e. Stepwise Multiple Linear Regression (SMLR), Artificial Neural Network (ANN), Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net (ELNET)were used to build the prediction models. Dataset of meteorological data and crop yield data of 15 years have been used to develop the forecast models. The developed models were also validated on the dataset of three years. The assessment of the developed models wasdone by using root mean square error (RMSE),normalized root mean square error (nRMSE),Mean Absolute Error (MAE) and on the basis of coefficient of determination (R2). The experimental analysis suggested that the performance for Artificial Neural Network (R2=0.99, RMSE=0.07, nRMSE=2.20, MAE=0.06) is better as compared to SMLR(R2=0.97, RMSE=0.08, nRMSE=2.34, MAE=0.05), LASSO (R2=0.62, RMSE=0.26, nRMSE=7.81, MAE=0.24) and ELNET (R2=0.54, RMSE=0.38, nRMSE=11.41, MAE=0.37) for the predictionof rice crop yield for Udham Singh Nagar (USN) district of Uttarakhand. Therefore, for the prediction of rice yield, ANN technique can be well utilised for Udham Singh Nagar district of Uttarakhand.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":"117 44","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of SMLR, ANN, Elastic net and LASSO based models for rice crop yield prediction in Uttarakhand\",\"authors\":\"P. Setiya, A. Nain, Anurag Satpathi\",\"doi\":\"10.54302/mausam.v75i1.3576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study was aimed to develop the yield forecast model for rice crop yield. Four different techniques i.e. Stepwise Multiple Linear Regression (SMLR), Artificial Neural Network (ANN), Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net (ELNET)were used to build the prediction models. Dataset of meteorological data and crop yield data of 15 years have been used to develop the forecast models. The developed models were also validated on the dataset of three years. The assessment of the developed models wasdone by using root mean square error (RMSE),normalized root mean square error (nRMSE),Mean Absolute Error (MAE) and on the basis of coefficient of determination (R2). The experimental analysis suggested that the performance for Artificial Neural Network (R2=0.99, RMSE=0.07, nRMSE=2.20, MAE=0.06) is better as compared to SMLR(R2=0.97, RMSE=0.08, nRMSE=2.34, MAE=0.05), LASSO (R2=0.62, RMSE=0.26, nRMSE=7.81, MAE=0.24) and ELNET (R2=0.54, RMSE=0.38, nRMSE=11.41, MAE=0.37) for the predictionof rice crop yield for Udham Singh Nagar (USN) district of Uttarakhand. Therefore, for the prediction of rice yield, ANN technique can be well utilised for Udham Singh Nagar district of Uttarakhand.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":\"117 44\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v75i1.3576\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54302/mausam.v75i1.3576","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这项研究旨在开发水稻作物产量预测模型。研究采用了四种不同的技术,即逐步多元线性回归(SMLR)、人工神经网络(ANN)、最小绝对收缩和选择操作器(LASSO)以及弹性网(ELNET)来建立预测模型。数据集包括 15 年的气象数据和作物产量数据,用于开发预测模型。开发的模型还在三年的数据集上进行了验证。使用均方根误差(RMSE)、归一化均方根误差(nRMSE)、平均绝对误差(MAE)和判定系数(R2)对所开发的模型进行了评估。实验分析表明,人工神经网络(R2=0.99,RMSE=0.07,nRMSE=2.20,MAE=0.06)的性能优于 SMLR(R2=0.97,RMSE=0.08,nRMSE=2.34,MAE=0.05)、LASSO(R2=0.62,RMSE=0.26,nRMSE=7.81,MAE=0.24)和 ELNET(R2=0.54,RMSE=0.38,nRMSE=11.41,MAE=0.37)对北阿坎德邦 Udham Singh Nagar(USN)地区水稻产量的预测效果更好。因此,在预测北阿坎德邦 Udham Singh Nagar 地区的水稻产量时,可以充分利用 ANN 技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of SMLR, ANN, Elastic net and LASSO based models for rice crop yield prediction in Uttarakhand
The study was aimed to develop the yield forecast model for rice crop yield. Four different techniques i.e. Stepwise Multiple Linear Regression (SMLR), Artificial Neural Network (ANN), Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net (ELNET)were used to build the prediction models. Dataset of meteorological data and crop yield data of 15 years have been used to develop the forecast models. The developed models were also validated on the dataset of three years. The assessment of the developed models wasdone by using root mean square error (RMSE),normalized root mean square error (nRMSE),Mean Absolute Error (MAE) and on the basis of coefficient of determination (R2). The experimental analysis suggested that the performance for Artificial Neural Network (R2=0.99, RMSE=0.07, nRMSE=2.20, MAE=0.06) is better as compared to SMLR(R2=0.97, RMSE=0.08, nRMSE=2.34, MAE=0.05), LASSO (R2=0.62, RMSE=0.26, nRMSE=7.81, MAE=0.24) and ELNET (R2=0.54, RMSE=0.38, nRMSE=11.41, MAE=0.37) for the predictionof rice crop yield for Udham Singh Nagar (USN) district of Uttarakhand. Therefore, for the prediction of rice yield, ANN technique can be well utilised for Udham Singh Nagar district of Uttarakhand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MAUSAM
MAUSAM 地学-气象与大气科学
CiteScore
1.20
自引率
0.00%
发文量
1298
审稿时长
6-12 weeks
期刊介绍: MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology, Hydrology & Geophysics. The four issues appear in January, April, July & October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信