整合机器智能估算 PM2.5 浓度,实现可持续的城市空气质量管理

Ahmed Metwaly, A. Sleem, Ibrahim Elhenawy
{"title":"整合机器智能估算 PM2.5 浓度,实现可持续的城市空气质量管理","authors":"Ahmed Metwaly, A. Sleem, Ibrahim Elhenawy","doi":"10.61185/smij.2023.44106","DOIUrl":null,"url":null,"abstract":"Air quality degradation, particularly the proliferation of fine particulate matter (PM2.5), poses a critical threat to environmental sustainability and public health. This paper introduces a comprehensive machine learning (ML) framework designed to predict PM2.5 concentrations, addressing the complexities inherent in heterogeneous urban environments. Drawing from a review of existing literature encompassing diverse ML methodologies applied to PM2.5 prediction, this study proposes an innovative approach amalgamating various data sources, including meteorological, geographical, and anthropogenic factors. Leveraging ensemble learning techniques and novel algorithmic models, our framework aims to surpass limitations encountered in current predictive models, enabling accurate and localized PM2.5 predictions. The significance of this research lies in its potential to offer a robust tool for environmental policymakers and urban planners, facilitating informed decisions towards mitigating PM2.5 pollution and fostering sustainable environments. Through evaluation of multiple ML algorithms, this paper contributes a novel predictive model crucial for enhancing air quality management.","PeriodicalId":148129,"journal":{"name":"Sustainable Machine Intelligence Journal","volume":"114 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Machine Intelligence to Estimate PM2.5 Concentration for Sustainable Urban Air Quality Management\",\"authors\":\"Ahmed Metwaly, A. Sleem, Ibrahim Elhenawy\",\"doi\":\"10.61185/smij.2023.44106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air quality degradation, particularly the proliferation of fine particulate matter (PM2.5), poses a critical threat to environmental sustainability and public health. This paper introduces a comprehensive machine learning (ML) framework designed to predict PM2.5 concentrations, addressing the complexities inherent in heterogeneous urban environments. Drawing from a review of existing literature encompassing diverse ML methodologies applied to PM2.5 prediction, this study proposes an innovative approach amalgamating various data sources, including meteorological, geographical, and anthropogenic factors. Leveraging ensemble learning techniques and novel algorithmic models, our framework aims to surpass limitations encountered in current predictive models, enabling accurate and localized PM2.5 predictions. The significance of this research lies in its potential to offer a robust tool for environmental policymakers and urban planners, facilitating informed decisions towards mitigating PM2.5 pollution and fostering sustainable environments. Through evaluation of multiple ML algorithms, this paper contributes a novel predictive model crucial for enhancing air quality management.\",\"PeriodicalId\":148129,\"journal\":{\"name\":\"Sustainable Machine Intelligence Journal\",\"volume\":\"114 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Machine Intelligence Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61185/smij.2023.44106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Machine Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61185/smij.2023.44106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空气质量恶化,尤其是细颗粒物(PM2.5)的增加,对环境可持续性和公众健康构成了严重威胁。本文介绍了一个全面的机器学习(ML)框架,旨在预测 PM2.5 的浓度,解决异构城市环境中固有的复杂问题。通过对应用于 PM2.5 预测的各种 ML 方法的现有文献进行回顾,本研究提出了一种将各种数据源(包括气象、地理和人为因素)整合在一起的创新方法。利用集合学习技术和新颖的算法模型,我们的框架旨在超越当前预测模型所遇到的限制,实现准确的本地化 PM2.5 预测。这项研究的意义在于,它有可能为环境决策者和城市规划者提供一个强大的工具,帮助他们做出明智的决策,以减轻 PM2.5 污染,促进可持续发展的环境。通过对多种 ML 算法的评估,本文提出了一种对加强空气质量管理至关重要的新型预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Machine Intelligence to Estimate PM2.5 Concentration for Sustainable Urban Air Quality Management
Air quality degradation, particularly the proliferation of fine particulate matter (PM2.5), poses a critical threat to environmental sustainability and public health. This paper introduces a comprehensive machine learning (ML) framework designed to predict PM2.5 concentrations, addressing the complexities inherent in heterogeneous urban environments. Drawing from a review of existing literature encompassing diverse ML methodologies applied to PM2.5 prediction, this study proposes an innovative approach amalgamating various data sources, including meteorological, geographical, and anthropogenic factors. Leveraging ensemble learning techniques and novel algorithmic models, our framework aims to surpass limitations encountered in current predictive models, enabling accurate and localized PM2.5 predictions. The significance of this research lies in its potential to offer a robust tool for environmental policymakers and urban planners, facilitating informed decisions towards mitigating PM2.5 pollution and fostering sustainable environments. Through evaluation of multiple ML algorithms, this paper contributes a novel predictive model crucial for enhancing air quality management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信