带分数积分边界条件的非线性隐含ϑ-卡普托分数微分方程的稳定性结果

IF 1.4 Q2 MATHEMATICS, APPLIED
I. Kaddoura, Yahia Awad
{"title":"带分数积分边界条件的非线性隐含ϑ-卡普托分数微分方程的稳定性结果","authors":"I. Kaddoura, Yahia Awad","doi":"10.1155/2023/5561399","DOIUrl":null,"url":null,"abstract":"This article examines the necessary conditions for the unique existence of solutions to nonlinear implicit ϑ-Caputo fractional differential equations accompanied by fractional order integral boundary conditions. The analysis draws upon Banach’s contraction principle and Krasnoselskii’s fixed point theorem. Furthermore, the circumstances leading to the attainment of Ulam–Hyers–Rassias forms of stability are established. An illustrative example is provided to demonstrate the derived findings.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Results for Nonlinear Implicit ϑ-Caputo Fractional Differential Equations with Fractional Integral Boundary Conditions\",\"authors\":\"I. Kaddoura, Yahia Awad\",\"doi\":\"10.1155/2023/5561399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examines the necessary conditions for the unique existence of solutions to nonlinear implicit ϑ-Caputo fractional differential equations accompanied by fractional order integral boundary conditions. The analysis draws upon Banach’s contraction principle and Krasnoselskii’s fixed point theorem. Furthermore, the circumstances leading to the attainment of Ulam–Hyers–Rassias forms of stability are established. An illustrative example is provided to demonstrate the derived findings.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5561399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5561399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了伴随分数阶积分边界条件的非线性隐式ϑ-卡普托分数微分方程解唯一存在的必要条件。分析借鉴了巴纳赫收缩原理和克拉斯诺瑟尔斯基定点定理。此外,还确定了达到 Ulam-Hyers-Rassias 稳定形式的条件。我们还提供了一个示例来证明所得出的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Results for Nonlinear Implicit ϑ-Caputo Fractional Differential Equations with Fractional Integral Boundary Conditions
This article examines the necessary conditions for the unique existence of solutions to nonlinear implicit ϑ-Caputo fractional differential equations accompanied by fractional order integral boundary conditions. The analysis draws upon Banach’s contraction principle and Krasnoselskii’s fixed point theorem. Furthermore, the circumstances leading to the attainment of Ulam–Hyers–Rassias forms of stability are established. An illustrative example is provided to demonstrate the derived findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信