采用多模态和生成式人工智能的设计研究方法:用数据驱动的分析方法强化人种学方法论

Penalva Tebar Jose Miguel, Ken Nah
{"title":"采用多模态和生成式人工智能的设计研究方法:用数据驱动的分析方法强化人种学方法论","authors":"Penalva Tebar Jose Miguel, Ken Nah","doi":"10.46248/kidrs.2023.4.27","DOIUrl":null,"url":null,"abstract":"This research examines the application of Multimodal and Generative AI in analyzing interior design trends within the South Korean market. The objective is to enhance traditional ethnographic research methods with AI's quantitative capabilities, offering a more comprehensive understanding of design preferences. This methodology uses AI tools to systematically analyze and categorize design elements from a large dataset of interior design images sourced from a relevant online platform. This process involves extracting key visual trends and patterns using AI-driven semantic analysis and clustering techniques. The study identifies and classifies four dominant design trends, providing a structured overview of current market preferences. By integrating AI into design trend analysis, the study demonstrates a novel approach to understanding consumer preferences, potentially influencing future design decisions. This use of AI in design research broadens the scope of traditional ethnographic studies in design and provides practical insights for designers and industry practitioners, suggesting a shift towards more data-driven design practice.","PeriodicalId":267590,"journal":{"name":"Korea Institute of Design Research Society","volume":"60 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"멀티모달 및 생성 AI를 통한 디자인 연구방법: 민족지학적 방법론을 데이터 기반 분석으로 강화하기\",\"authors\":\"Penalva Tebar Jose Miguel, Ken Nah\",\"doi\":\"10.46248/kidrs.2023.4.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research examines the application of Multimodal and Generative AI in analyzing interior design trends within the South Korean market. The objective is to enhance traditional ethnographic research methods with AI's quantitative capabilities, offering a more comprehensive understanding of design preferences. This methodology uses AI tools to systematically analyze and categorize design elements from a large dataset of interior design images sourced from a relevant online platform. This process involves extracting key visual trends and patterns using AI-driven semantic analysis and clustering techniques. The study identifies and classifies four dominant design trends, providing a structured overview of current market preferences. By integrating AI into design trend analysis, the study demonstrates a novel approach to understanding consumer preferences, potentially influencing future design decisions. This use of AI in design research broadens the scope of traditional ethnographic studies in design and provides practical insights for designers and industry practitioners, suggesting a shift towards more data-driven design practice.\",\"PeriodicalId\":267590,\"journal\":{\"name\":\"Korea Institute of Design Research Society\",\"volume\":\"60 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korea Institute of Design Research Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46248/kidrs.2023.4.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea Institute of Design Research Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46248/kidrs.2023.4.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了多模态和生成式人工智能在分析韩国市场室内设计趋势中的应用。目的是利用人工智能的定量能力加强传统的人种学研究方法,从而更全面地了解设计偏好。该方法使用人工智能工具,从相关在线平台上获取的大量室内设计图片数据集中对设计元素进行系统分析和分类。这一过程包括利用人工智能驱动的语义分析和聚类技术提取关键的视觉趋势和模式。这项研究确定了四种主要的设计趋势并对其进行了分类,为当前的市场偏好提供了一个结构化的概览。通过将人工智能融入设计趋势分析,该研究展示了一种了解消费者偏好的新方法,有可能对未来的设计决策产生影响。人工智能在设计研究中的应用拓宽了传统设计人种学研究的范围,为设计师和行业从业者提供了实用的见解,表明设计实践正在向数据驱动型转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
멀티모달 및 생성 AI를 통한 디자인 연구방법: 민족지학적 방법론을 데이터 기반 분석으로 강화하기
This research examines the application of Multimodal and Generative AI in analyzing interior design trends within the South Korean market. The objective is to enhance traditional ethnographic research methods with AI's quantitative capabilities, offering a more comprehensive understanding of design preferences. This methodology uses AI tools to systematically analyze and categorize design elements from a large dataset of interior design images sourced from a relevant online platform. This process involves extracting key visual trends and patterns using AI-driven semantic analysis and clustering techniques. The study identifies and classifies four dominant design trends, providing a structured overview of current market preferences. By integrating AI into design trend analysis, the study demonstrates a novel approach to understanding consumer preferences, potentially influencing future design decisions. This use of AI in design research broadens the scope of traditional ethnographic studies in design and provides practical insights for designers and industry practitioners, suggesting a shift towards more data-driven design practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信