{"title":"延迟-D:无人驾驶飞行器中存储设备的寿命和性能研究","authors":"Donghyun Kang","doi":"10.3390/aerospace11010047","DOIUrl":null,"url":null,"abstract":"Despite the technological achievements of unmanned aerial vehicles (UAVs) growing in academia and industry, there is a lack of studies on the storage devices in UAVs. However, this is an important aspect because the storage devices in UAVs have a limited lifespan and performance and are rarely replaced due to a system-on-chip architecture. In this paper, we study how UAVs impact the lifespan and performance of the underlying storage device while capturing images during overflight. We also propose a new lifespan and performance-saving mechanism, called Delay-D, which is designed at the kernel level to efficiently utilize the features of NAND flash-based storage devices. To confirm the effectiveness of Delay-D, we implement a simulator that replays realistic write patterns on UAVs and evaluate quantitative experiments in two different experimental environments. In our evaluation, Delay-D demonstrates the dramatic extension possibility of the lifespan by reducing the number of extra writes inside the storage device and improving the overall performance by up to 2.1× on the commercial NVMe SSD.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"81 16","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delay-D: Research on the Lifespan and Performance of Storage Devices in Unmanned Aerial Vehicles\",\"authors\":\"Donghyun Kang\",\"doi\":\"10.3390/aerospace11010047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the technological achievements of unmanned aerial vehicles (UAVs) growing in academia and industry, there is a lack of studies on the storage devices in UAVs. However, this is an important aspect because the storage devices in UAVs have a limited lifespan and performance and are rarely replaced due to a system-on-chip architecture. In this paper, we study how UAVs impact the lifespan and performance of the underlying storage device while capturing images during overflight. We also propose a new lifespan and performance-saving mechanism, called Delay-D, which is designed at the kernel level to efficiently utilize the features of NAND flash-based storage devices. To confirm the effectiveness of Delay-D, we implement a simulator that replays realistic write patterns on UAVs and evaluate quantitative experiments in two different experimental environments. In our evaluation, Delay-D demonstrates the dramatic extension possibility of the lifespan by reducing the number of extra writes inside the storage device and improving the overall performance by up to 2.1× on the commercial NVMe SSD.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"81 16\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11010047\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010047","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Delay-D: Research on the Lifespan and Performance of Storage Devices in Unmanned Aerial Vehicles
Despite the technological achievements of unmanned aerial vehicles (UAVs) growing in academia and industry, there is a lack of studies on the storage devices in UAVs. However, this is an important aspect because the storage devices in UAVs have a limited lifespan and performance and are rarely replaced due to a system-on-chip architecture. In this paper, we study how UAVs impact the lifespan and performance of the underlying storage device while capturing images during overflight. We also propose a new lifespan and performance-saving mechanism, called Delay-D, which is designed at the kernel level to efficiently utilize the features of NAND flash-based storage devices. To confirm the effectiveness of Delay-D, we implement a simulator that replays realistic write patterns on UAVs and evaluate quantitative experiments in two different experimental environments. In our evaluation, Delay-D demonstrates the dramatic extension possibility of the lifespan by reducing the number of extra writes inside the storage device and improving the overall performance by up to 2.1× on the commercial NVMe SSD.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.