Hidayatul Mayyani, Marisa Nurbaiti, P. T. Supriyo, A. Aman, B. P. Silalahi
{"title":"遗传算法与轮盘和置换法在营业额优化中的应用","authors":"Hidayatul Mayyani, Marisa Nurbaiti, P. T. Supriyo, A. Aman, B. P. Silalahi","doi":"10.29244/milang.19.2.153-172","DOIUrl":null,"url":null,"abstract":"Perhitungan masalah memaksimumkan omzet serta analisis yang tepat terhadap proses produksi diperlukan untuk meningkatkan pendapatan perusahaan. Permasalahan memaksimumkan omzet ini dapat diselesaikan dengan algoritma genetika. Terdapat banyak metode seleksi dalam algoritma genetika, dua di antaranya ialah roulette wheel dan replacement. Penelitian dilakukan untuk mencari metode seleksi terbaik berdasarkan rata-rata nilai fitness yang dihasilkan. Penelitian ini ditinjau berdasarkan tiga kasus yang berbeda dalam membandingkan kedua metode seleksi yang diuji, kasus pertama menggunakan ukuran populasi 10 dan banyak generasi juga 10, kasus kedua menggunakan ukuran populasi 25 dan banyak generasi 10, sedangkan kasus ketiga menggunakan ukuran populasi 10 dan banyak generasi 50. Ketiga kasus tersebut menggunakan parameter tetap yaitu crossover rate 0,8 dan mutation rate 0,1. Dari penelitian ini didapatkan bahwa metode replacement lebih baik dari metode roulette wheel.","PeriodicalId":429085,"journal":{"name":"MILANG Journal of Mathematics and Its Applications","volume":"86 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN ALGORITMA GENETIKA DENGAN METODE ROULETTE WHEEL DAN REPLACEMENT PADA OPTIMASI OMZET\",\"authors\":\"Hidayatul Mayyani, Marisa Nurbaiti, P. T. Supriyo, A. Aman, B. P. Silalahi\",\"doi\":\"10.29244/milang.19.2.153-172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perhitungan masalah memaksimumkan omzet serta analisis yang tepat terhadap proses produksi diperlukan untuk meningkatkan pendapatan perusahaan. Permasalahan memaksimumkan omzet ini dapat diselesaikan dengan algoritma genetika. Terdapat banyak metode seleksi dalam algoritma genetika, dua di antaranya ialah roulette wheel dan replacement. Penelitian dilakukan untuk mencari metode seleksi terbaik berdasarkan rata-rata nilai fitness yang dihasilkan. Penelitian ini ditinjau berdasarkan tiga kasus yang berbeda dalam membandingkan kedua metode seleksi yang diuji, kasus pertama menggunakan ukuran populasi 10 dan banyak generasi juga 10, kasus kedua menggunakan ukuran populasi 25 dan banyak generasi 10, sedangkan kasus ketiga menggunakan ukuran populasi 10 dan banyak generasi 50. Ketiga kasus tersebut menggunakan parameter tetap yaitu crossover rate 0,8 dan mutation rate 0,1. Dari penelitian ini didapatkan bahwa metode replacement lebih baik dari metode roulette wheel.\",\"PeriodicalId\":429085,\"journal\":{\"name\":\"MILANG Journal of Mathematics and Its Applications\",\"volume\":\"86 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILANG Journal of Mathematics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29244/milang.19.2.153-172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILANG Journal of Mathematics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29244/milang.19.2.153-172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PENERAPAN ALGORITMA GENETIKA DENGAN METODE ROULETTE WHEEL DAN REPLACEMENT PADA OPTIMASI OMZET
Perhitungan masalah memaksimumkan omzet serta analisis yang tepat terhadap proses produksi diperlukan untuk meningkatkan pendapatan perusahaan. Permasalahan memaksimumkan omzet ini dapat diselesaikan dengan algoritma genetika. Terdapat banyak metode seleksi dalam algoritma genetika, dua di antaranya ialah roulette wheel dan replacement. Penelitian dilakukan untuk mencari metode seleksi terbaik berdasarkan rata-rata nilai fitness yang dihasilkan. Penelitian ini ditinjau berdasarkan tiga kasus yang berbeda dalam membandingkan kedua metode seleksi yang diuji, kasus pertama menggunakan ukuran populasi 10 dan banyak generasi juga 10, kasus kedua menggunakan ukuran populasi 25 dan banyak generasi 10, sedangkan kasus ketiga menggunakan ukuran populasi 10 dan banyak generasi 50. Ketiga kasus tersebut menggunakan parameter tetap yaitu crossover rate 0,8 dan mutation rate 0,1. Dari penelitian ini didapatkan bahwa metode replacement lebih baik dari metode roulette wheel.