通过移位 Vieta-Lucas 多项式的分数导数近似解析解分数阶广义积分微分方程

Kazeem Issa, Risikat A. Bello, Usman Jos Abubakar
{"title":"通过移位 Vieta-Lucas 多项式的分数导数近似解析解分数阶广义积分微分方程","authors":"Kazeem Issa, Risikat A. Bello, Usman Jos Abubakar","doi":"10.46481/jnsps.2024.1821","DOIUrl":null,"url":null,"abstract":"In this paper, we extend fractional-order derivative for the shifted Vieta-Lucas polynomial to generalized-fractional integro-differential equations involving non-local boundary conditions using Galerkin method as transformation technique and obtained N - \\delta + 1 system of linear algebraic equations with \\lambda i, i = 0, . . . , N unknowns, together with \\delta non-local boundary conditions, we obtained (N + 1)- linear equations. The accuracy and effectiveness of the scheme was tested on some selected problems from the literature. Judging from the table of results and figures, we observed that the approximate solution corresponding to the problem that has exact solution in polynomial form gives a closed form solution while problem with non-polynomial exact solution gives better accuracy compared to the existing results.","PeriodicalId":342917,"journal":{"name":"Journal of the Nigerian Society of Physical Sciences","volume":"15 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate analytical solution of fractional-order generalized integro-differential equations via fractional derivative of shifted Vieta-Lucas polynomial\",\"authors\":\"Kazeem Issa, Risikat A. Bello, Usman Jos Abubakar\",\"doi\":\"10.46481/jnsps.2024.1821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend fractional-order derivative for the shifted Vieta-Lucas polynomial to generalized-fractional integro-differential equations involving non-local boundary conditions using Galerkin method as transformation technique and obtained N - \\\\delta + 1 system of linear algebraic equations with \\\\lambda i, i = 0, . . . , N unknowns, together with \\\\delta non-local boundary conditions, we obtained (N + 1)- linear equations. The accuracy and effectiveness of the scheme was tested on some selected problems from the literature. Judging from the table of results and figures, we observed that the approximate solution corresponding to the problem that has exact solution in polynomial form gives a closed form solution while problem with non-polynomial exact solution gives better accuracy compared to the existing results.\",\"PeriodicalId\":342917,\"journal\":{\"name\":\"Journal of the Nigerian Society of Physical Sciences\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Society of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46481/jnsps.2024.1821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Society of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46481/jnsps.2024.1821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文使用 Galerkin 方法作为转换技术,将移位 Vieta-Lucas 多项式的分数阶导数扩展到涉及非局部边界条件的广义分数积分微分方程,得到了 N - \delta + 1 个线性代数方程系统,其中 \lambda i, i = 0, ., N 个未知数,再加上 \delta 非局部边界条件,我们得到了 (N + 1)- 个线性方程。我们从文献中选取了一些问题来检验该方案的准确性和有效性。从结果表和图中可以看出,与有多项式精确解的问题相对应的近似解给出了闭式解,而与现有结果相比,有非多项式精确解的问题给出了更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate analytical solution of fractional-order generalized integro-differential equations via fractional derivative of shifted Vieta-Lucas polynomial
In this paper, we extend fractional-order derivative for the shifted Vieta-Lucas polynomial to generalized-fractional integro-differential equations involving non-local boundary conditions using Galerkin method as transformation technique and obtained N - \delta + 1 system of linear algebraic equations with \lambda i, i = 0, . . . , N unknowns, together with \delta non-local boundary conditions, we obtained (N + 1)- linear equations. The accuracy and effectiveness of the scheme was tested on some selected problems from the literature. Judging from the table of results and figures, we observed that the approximate solution corresponding to the problem that has exact solution in polynomial form gives a closed form solution while problem with non-polynomial exact solution gives better accuracy compared to the existing results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信