{"title":"一种新型金属有机框架的合成与表征及其在净化有毒亚甲基蓝染料废水中的应用","authors":"Osama Jassim Attar, R. Alrubaye","doi":"10.12911/22998993/173209","DOIUrl":null,"url":null,"abstract":"This paper describes the synthesis of a promising material and evaluates the suitability of a metal-organic frame - work (MOF-199) for purifying toxic methylene blue (MB) dye wastewater via an adsorption process. (MOF-199) is considered much better than traditional adsorbents. The research focused on determining the adsorption char - acteristics and dye removal effectiveness with MOF-199, where several factors were studied, including dye con - centration, contact time, amount of adsorbent, and pH. The highest observed dye removal efficiency was 97.21% when the pH was 7.5, and the reaction duration was 90 minutes. This was achieved by adding 0.2 g of MOF-199 to a dye solution containing 20 mg/L methylene blue. The adsorption process was evaluated by Langmuir, and the Freundlich isotherm models. As the strong correlation factor (R 2 = 0.9989) indicates a pseudo-second-order kinetic model describes the adsorption methylene blue by MOF-199 the best. This indicates that the main mechanism of dye removal is chemisorption. Finally, the MOF-199 material can have remarkable reusability as an adsorption material for MB and subsequent efficiency of MOF-199 exhibited a reduction of 14.43% after undergoing four cycles, compared to its initial state. Yet, it remained at a commendably high level.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":"11 9","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of a Contemporary Type of Metal-Organic Framework and its Application for Purification Wastewater from Toxic Methylene Blue Dye\",\"authors\":\"Osama Jassim Attar, R. Alrubaye\",\"doi\":\"10.12911/22998993/173209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the synthesis of a promising material and evaluates the suitability of a metal-organic frame - work (MOF-199) for purifying toxic methylene blue (MB) dye wastewater via an adsorption process. (MOF-199) is considered much better than traditional adsorbents. The research focused on determining the adsorption char - acteristics and dye removal effectiveness with MOF-199, where several factors were studied, including dye con - centration, contact time, amount of adsorbent, and pH. The highest observed dye removal efficiency was 97.21% when the pH was 7.5, and the reaction duration was 90 minutes. This was achieved by adding 0.2 g of MOF-199 to a dye solution containing 20 mg/L methylene blue. The adsorption process was evaluated by Langmuir, and the Freundlich isotherm models. As the strong correlation factor (R 2 = 0.9989) indicates a pseudo-second-order kinetic model describes the adsorption methylene blue by MOF-199 the best. This indicates that the main mechanism of dye removal is chemisorption. Finally, the MOF-199 material can have remarkable reusability as an adsorption material for MB and subsequent efficiency of MOF-199 exhibited a reduction of 14.43% after undergoing four cycles, compared to its initial state. Yet, it remained at a commendably high level.\",\"PeriodicalId\":15652,\"journal\":{\"name\":\"Journal of Ecological Engineering\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ecological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12911/22998993/173209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/173209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Synthesis and Characterization of a Contemporary Type of Metal-Organic Framework and its Application for Purification Wastewater from Toxic Methylene Blue Dye
This paper describes the synthesis of a promising material and evaluates the suitability of a metal-organic frame - work (MOF-199) for purifying toxic methylene blue (MB) dye wastewater via an adsorption process. (MOF-199) is considered much better than traditional adsorbents. The research focused on determining the adsorption char - acteristics and dye removal effectiveness with MOF-199, where several factors were studied, including dye con - centration, contact time, amount of adsorbent, and pH. The highest observed dye removal efficiency was 97.21% when the pH was 7.5, and the reaction duration was 90 minutes. This was achieved by adding 0.2 g of MOF-199 to a dye solution containing 20 mg/L methylene blue. The adsorption process was evaluated by Langmuir, and the Freundlich isotherm models. As the strong correlation factor (R 2 = 0.9989) indicates a pseudo-second-order kinetic model describes the adsorption methylene blue by MOF-199 the best. This indicates that the main mechanism of dye removal is chemisorption. Finally, the MOF-199 material can have remarkable reusability as an adsorption material for MB and subsequent efficiency of MOF-199 exhibited a reduction of 14.43% after undergoing four cycles, compared to its initial state. Yet, it remained at a commendably high level.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment