G. E. Niño, †. DelRío, R. G. R. Camacho, N. M. Filho, W. D. Oliveira, T. M. A. Angulo
{"title":"设计适用于大功率发电的亲鱼涡轮转子的方法学","authors":"G. E. Niño, †. DelRío, R. G. R. Camacho, N. M. Filho, W. D. Oliveira, T. M. A. Angulo","doi":"10.47176/jafm.17.1.1927","DOIUrl":null,"url":null,"abstract":"Most large hydropower facilities employing conventional hydraulic turbines, e.g., Francis, Kaplan, or Bulb turbines, etc., cause significant harm to fish, resulting in high mortality rates, during turbine operation. This results from strong injury-inducing mechanisms at the rotor, including shear stresses, pressure variations, and pressure drop through the rotor. The study outlines a methodology for designing a fish-friendly turbine that is suitable for high-power generation applications. This methodology for a hydraulic channel design within the turbine rotor was derived based on classical fundamental applications of a rotor design, supplemented by subsequent assessments that incorporate fish-friendly design parameters that have been documented in the existing literature. A spiral curve characterized by a linear angle variation between the rotor's inlet and outlet was employed to project the blade geometry. Here, the Göttingen hydrofoil series was used, while a second-order polynomial function guided the hub design. Both of these parametrizations sought to enhance the turbine's hydraulic efficiency. Minimum Absolute Pressure, Strain Rate, and Pressure Variation Rate intervals were established as assessment criteria for fish survival for certain species, as has also been previously explored in the literature. The findings were outlined in terms of hydrodynamic performance and flow behavior within the rotor. An improvement in hydraulic efficiency was observed, transitioning from a Preliminary Turbine geometry design to an Optimized Turbine Geometry design. The turbine rotor was optimized using Computational Fluid Dynamics (CFD) simulations, generated from a Design of Experiments (DOE). Modifications to the hydrofoil type, the sweep angle, and the trailing edge angle of the blades were all made, coupled with integrations of assessments considering fish-friendly parameters.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":"39 10","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Methodology for Designing a Fish-Friendly Turbine Rotor Applied to High-Power Generation\",\"authors\":\"G. E. Niño, †. DelRío, R. G. R. Camacho, N. M. Filho, W. D. Oliveira, T. M. A. Angulo\",\"doi\":\"10.47176/jafm.17.1.1927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most large hydropower facilities employing conventional hydraulic turbines, e.g., Francis, Kaplan, or Bulb turbines, etc., cause significant harm to fish, resulting in high mortality rates, during turbine operation. This results from strong injury-inducing mechanisms at the rotor, including shear stresses, pressure variations, and pressure drop through the rotor. The study outlines a methodology for designing a fish-friendly turbine that is suitable for high-power generation applications. This methodology for a hydraulic channel design within the turbine rotor was derived based on classical fundamental applications of a rotor design, supplemented by subsequent assessments that incorporate fish-friendly design parameters that have been documented in the existing literature. A spiral curve characterized by a linear angle variation between the rotor's inlet and outlet was employed to project the blade geometry. Here, the Göttingen hydrofoil series was used, while a second-order polynomial function guided the hub design. Both of these parametrizations sought to enhance the turbine's hydraulic efficiency. Minimum Absolute Pressure, Strain Rate, and Pressure Variation Rate intervals were established as assessment criteria for fish survival for certain species, as has also been previously explored in the literature. The findings were outlined in terms of hydrodynamic performance and flow behavior within the rotor. An improvement in hydraulic efficiency was observed, transitioning from a Preliminary Turbine geometry design to an Optimized Turbine Geometry design. The turbine rotor was optimized using Computational Fluid Dynamics (CFD) simulations, generated from a Design of Experiments (DOE). Modifications to the hydrofoil type, the sweep angle, and the trailing edge angle of the blades were all made, coupled with integrations of assessments considering fish-friendly parameters.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":\"39 10\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.1.1927\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.1.1927","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
A Methodology for Designing a Fish-Friendly Turbine Rotor Applied to High-Power Generation
Most large hydropower facilities employing conventional hydraulic turbines, e.g., Francis, Kaplan, or Bulb turbines, etc., cause significant harm to fish, resulting in high mortality rates, during turbine operation. This results from strong injury-inducing mechanisms at the rotor, including shear stresses, pressure variations, and pressure drop through the rotor. The study outlines a methodology for designing a fish-friendly turbine that is suitable for high-power generation applications. This methodology for a hydraulic channel design within the turbine rotor was derived based on classical fundamental applications of a rotor design, supplemented by subsequent assessments that incorporate fish-friendly design parameters that have been documented in the existing literature. A spiral curve characterized by a linear angle variation between the rotor's inlet and outlet was employed to project the blade geometry. Here, the Göttingen hydrofoil series was used, while a second-order polynomial function guided the hub design. Both of these parametrizations sought to enhance the turbine's hydraulic efficiency. Minimum Absolute Pressure, Strain Rate, and Pressure Variation Rate intervals were established as assessment criteria for fish survival for certain species, as has also been previously explored in the literature. The findings were outlined in terms of hydrodynamic performance and flow behavior within the rotor. An improvement in hydraulic efficiency was observed, transitioning from a Preliminary Turbine geometry design to an Optimized Turbine Geometry design. The turbine rotor was optimized using Computational Fluid Dynamics (CFD) simulations, generated from a Design of Experiments (DOE). Modifications to the hydrofoil type, the sweep angle, and the trailing edge angle of the blades were all made, coupled with integrations of assessments considering fish-friendly parameters.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .