论一维双层浅水模型全局强解的存在性

Roamba Brahima, Zongo Julien, Bamogo Mohamed Bassirou, Zongo Yacouba, Zabsonre Jean de Dieu
{"title":"论一维双层浅水模型全局强解的存在性","authors":"Roamba Brahima, Zongo Julien, Bamogo Mohamed Bassirou, Zongo Yacouba, Zabsonre Jean de Dieu","doi":"10.21608/ejmaa.2023.193654.1006","DOIUrl":null,"url":null,"abstract":". Our study focuses on 1D viscous bilayer shallow water model. The model considered is represented by two superposed immiscible fluids with different physical properties. Each layer is governed by the shallow water equations in one dimension. A regularized model of the considered model has been the subject of some recent studies. Our contribution is to extend the results of the work carried out in [ Nonlinear Analysis, vol (14)2, 1216-1124, (2013) ] by proving the existence of global strong solutions of the considered model.","PeriodicalId":91074,"journal":{"name":"Electronic journal of mathematical analysis and applications","volume":"42 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of global strong solutions to 1D bilayer shallow water model\",\"authors\":\"Roamba Brahima, Zongo Julien, Bamogo Mohamed Bassirou, Zongo Yacouba, Zabsonre Jean de Dieu\",\"doi\":\"10.21608/ejmaa.2023.193654.1006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Our study focuses on 1D viscous bilayer shallow water model. The model considered is represented by two superposed immiscible fluids with different physical properties. Each layer is governed by the shallow water equations in one dimension. A regularized model of the considered model has been the subject of some recent studies. Our contribution is to extend the results of the work carried out in [ Nonlinear Analysis, vol (14)2, 1216-1124, (2013) ] by proving the existence of global strong solutions of the considered model.\",\"PeriodicalId\":91074,\"journal\":{\"name\":\"Electronic journal of mathematical analysis and applications\",\"volume\":\"42 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic journal of mathematical analysis and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/ejmaa.2023.193654.1006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic journal of mathematical analysis and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ejmaa.2023.193654.1006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.我们的研究侧重于一维粘性双层浅水模型。该模型由两种具有不同物理性质的不相溶流体叠加而成。每一层都受一维浅水方程控制。该模型的正则化模型是最近一些研究的主题。我们的贡献在于通过证明所考虑模型的全局强解的存在,扩展了[ Nonlinear Analysis, vol (14)2, 1216-1124, (2013)]中的工作成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of global strong solutions to 1D bilayer shallow water model
. Our study focuses on 1D viscous bilayer shallow water model. The model considered is represented by two superposed immiscible fluids with different physical properties. Each layer is governed by the shallow water equations in one dimension. A regularized model of the considered model has been the subject of some recent studies. Our contribution is to extend the results of the work carried out in [ Nonlinear Analysis, vol (14)2, 1216-1124, (2013) ] by proving the existence of global strong solutions of the considered model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信