利用地球静止闪电成像仪 (GLM) 数据自动客观地识别和跟踪雷暴

IF 2.6 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Kelley M. Murphy, Lawrence D. Carey, Christopher J. Schultz, N. Curtis, Kristin M. Calhoun
{"title":"利用地球静止闪电成像仪 (GLM) 数据自动客观地识别和跟踪雷暴","authors":"Kelley M. Murphy, Lawrence D. Carey, Christopher J. Schultz, N. Curtis, Kristin M. Calhoun","doi":"10.1175/jamc-d-22-0143.1","DOIUrl":null,"url":null,"abstract":"A unique storm identification and tracking method is analyzed in varying storm environments within the United States spanning 273 hours in 2018. The methodology uses a quantity calculated through fusion of radar-based vertically integrated liquid (VIL) and satellite-based GLM flash rate density (FRD) called VILFRD to identify storms in space and time. This research analyzes GLM data use within VILFRD for the first time (method original: O), assesses four modifications to VILFRD implementation to find a more stable storm size with time (method new: N), larger storms (method original dilated: OD), or both (method new dilated: ND), and compares VILFRD methods with storm tracking using the 35-dBZ isosurface at −10°C (method non-VILFRD: NV). A case study analysis from 2019 is included to assess methods on a smaller scale and introduce a “lightning only” (LO) version of VILFRD. Large study results highlight that VILFRD-based storm identification produces smaller storms with more lightning than the NV method, and the NV method produces larger storms with a more stable size over time. Methods N and ND create smaller storm size fluctuations, but size changes more often. Dilation (OD, ND) creates larger storms and almost double the number of storms identified relative to nondilated methods (O, N, NV). The case study results closely resemble the large sample results and show that the LO method identifies storms with more lightning and shorter durations. Overall, these findings can aid in choice of storm tracking method based on desired user application and promote further testing of a lightning-only version of VILFRD.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"63 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated and Objective Thunderstorm Identification and Tracking Using Geostationary Lightning Mapper (GLM) Data\",\"authors\":\"Kelley M. Murphy, Lawrence D. Carey, Christopher J. Schultz, N. Curtis, Kristin M. Calhoun\",\"doi\":\"10.1175/jamc-d-22-0143.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A unique storm identification and tracking method is analyzed in varying storm environments within the United States spanning 273 hours in 2018. The methodology uses a quantity calculated through fusion of radar-based vertically integrated liquid (VIL) and satellite-based GLM flash rate density (FRD) called VILFRD to identify storms in space and time. This research analyzes GLM data use within VILFRD for the first time (method original: O), assesses four modifications to VILFRD implementation to find a more stable storm size with time (method new: N), larger storms (method original dilated: OD), or both (method new dilated: ND), and compares VILFRD methods with storm tracking using the 35-dBZ isosurface at −10°C (method non-VILFRD: NV). A case study analysis from 2019 is included to assess methods on a smaller scale and introduce a “lightning only” (LO) version of VILFRD. Large study results highlight that VILFRD-based storm identification produces smaller storms with more lightning than the NV method, and the NV method produces larger storms with a more stable size over time. Methods N and ND create smaller storm size fluctuations, but size changes more often. Dilation (OD, ND) creates larger storms and almost double the number of storms identified relative to nondilated methods (O, N, NV). The case study results closely resemble the large sample results and show that the LO method identifies storms with more lightning and shorter durations. Overall, these findings can aid in choice of storm tracking method based on desired user application and promote further testing of a lightning-only version of VILFRD.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\"63 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-22-0143.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-22-0143.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在 2018 年美国境内跨越 273 小时的不同风暴环境中分析了一种独特的风暴识别和跟踪方法。该方法使用通过融合基于雷达的垂直集成液体(VIL)和基于卫星的 GLM 闪光率密度(FRD)计算出的量,称为 VILFRD,来识别空间和时间上的风暴。本研究首次分析了 VILFRD 中 GLM 数据的使用情况(原始方法:O),评估了对 VILFRD 实施的四种修改,以找到随时间变化更稳定的风暴大小(新方法:N)、更大的风暴(原始方法扩张:OD)或两者(新方法扩张:ND),并将 VILFRD 方法与使用-10°C 的 35-dBZ 等压面进行风暴跟踪(非 VILFRD 方法:NV)进行了比较。其中还包括 2019 年的案例研究分析,以评估较小规模的方法,并介绍 "仅闪电"(LO)版本的 VILFRD。大型研究结果表明,与 NV 方法相比,基于 VILFRD 的风暴识别方法产生的风暴规模较小,闪电较多,而 NV 方法产生的风暴规模较大,且随着时间的推移规模更加稳定。N 和 ND 方法产生的风暴大小波动较小,但大小变化更频繁。相对于非膨胀法(O、N、NV),膨胀法(OD、ND)产生的风暴更大,识别出的风暴数量几乎翻倍。案例研究结果与大样本结果非常相似,表明 LO 方法识别出的风暴闪电更多,持续时间更短。总之,这些发现有助于根据用户的应用需求选择风暴跟踪方法,并促进对 VILFRD 仅闪电版本的进一步测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated and Objective Thunderstorm Identification and Tracking Using Geostationary Lightning Mapper (GLM) Data
A unique storm identification and tracking method is analyzed in varying storm environments within the United States spanning 273 hours in 2018. The methodology uses a quantity calculated through fusion of radar-based vertically integrated liquid (VIL) and satellite-based GLM flash rate density (FRD) called VILFRD to identify storms in space and time. This research analyzes GLM data use within VILFRD for the first time (method original: O), assesses four modifications to VILFRD implementation to find a more stable storm size with time (method new: N), larger storms (method original dilated: OD), or both (method new dilated: ND), and compares VILFRD methods with storm tracking using the 35-dBZ isosurface at −10°C (method non-VILFRD: NV). A case study analysis from 2019 is included to assess methods on a smaller scale and introduce a “lightning only” (LO) version of VILFRD. Large study results highlight that VILFRD-based storm identification produces smaller storms with more lightning than the NV method, and the NV method produces larger storms with a more stable size over time. Methods N and ND create smaller storm size fluctuations, but size changes more often. Dilation (OD, ND) creates larger storms and almost double the number of storms identified relative to nondilated methods (O, N, NV). The case study results closely resemble the large sample results and show that the LO method identifies storms with more lightning and shorter durations. Overall, these findings can aid in choice of storm tracking method based on desired user application and promote further testing of a lightning-only version of VILFRD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Meteorology and Climatology
Journal of Applied Meteorology and Climatology 地学-气象与大气科学
CiteScore
5.10
自引率
6.70%
发文量
97
审稿时长
3 months
期刊介绍: The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信