{"title":"GIS 技巧与窍门 片状物消失了!","authors":"Savannah Carter, Al Karlin","doi":"10.14358/pers.90.1.5","DOIUrl":null,"url":null,"abstract":"One of the most annoying aspects of building large polygon datasets by heads-up digitizing occurs when there are small overlaps and/or gaps where the polygons meet. Edge-matching to eliminate slivers between digitized polygons can be a laborious and tedious task. These \"slivers\", especially voids, can be very difficult to detect by visual means, so the GIS workflow to resolve these issues generally involves building topology, constructing a ruleset, and running advanced GIS tools; a heady operation for a beginning GIS analyst and particularly cumbersome when tracking a few slivers. This month's GIS Tip demonstrates a quick and effective workflow to avoid the build topology route.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"14 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GIS Tips & Tricks Slivers be Gone!\",\"authors\":\"Savannah Carter, Al Karlin\",\"doi\":\"10.14358/pers.90.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most annoying aspects of building large polygon datasets by heads-up digitizing occurs when there are small overlaps and/or gaps where the polygons meet. Edge-matching to eliminate slivers between digitized polygons can be a laborious and tedious task. These \\\"slivers\\\", especially voids, can be very difficult to detect by visual means, so the GIS workflow to resolve these issues generally involves building topology, constructing a ruleset, and running advanced GIS tools; a heady operation for a beginning GIS analyst and particularly cumbersome when tracking a few slivers. This month's GIS Tip demonstrates a quick and effective workflow to avoid the build topology route.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.90.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.90.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One of the most annoying aspects of building large polygon datasets by heads-up digitizing occurs when there are small overlaps and/or gaps where the polygons meet. Edge-matching to eliminate slivers between digitized polygons can be a laborious and tedious task. These "slivers", especially voids, can be very difficult to detect by visual means, so the GIS workflow to resolve these issues generally involves building topology, constructing a ruleset, and running advanced GIS tools; a heady operation for a beginning GIS analyst and particularly cumbersome when tracking a few slivers. This month's GIS Tip demonstrates a quick and effective workflow to avoid the build topology route.