根据上层海洋波浪能量的传输路线解读负 IOD 事件

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY
Zimeng Li, H. Aiki
{"title":"根据上层海洋波浪能量的传输路线解读负 IOD 事件","authors":"Zimeng Li, H. Aiki","doi":"10.1175/jpo-d-22-0267.1","DOIUrl":null,"url":null,"abstract":"The present study adopts an energy-based approach to interpret the negative phase of Indian Ocean dipole (IOD) events. This is accomplished by diagnosing the output of hindcast experiments from 1958 to 2018 based on a linear ocean model. The authors have performed a composite analysis for a set of negative IOD (nIOD) events, distinguishing between independent nIOD events and concurrent nIOD events with El Niño–Southern Oscillation (ENSO). The focus is on investigating the mechanism of nIOD events in terms of wave energy transfer, employing a linear wave theory that considers the group velocity. The proposed diagnostic scheme offers a unified framework for studying the interaction between equatorial and off-equatorial waves. Both the first and third baroclinic modes exhibit interannual variations characterized by a distinct packet of eastward energy flux associated with equatorial Kelvin waves. During October–December, westerly wind anomalies induce the propagation of eastward-moving equatorial waves, leading to thermocline deepening in the central-eastern equatorial Indian Ocean, a feature absent during neutral IOD years. The development of wave energy demonstrates different patterns during nIOD events of various types. In concurrent nIOD–ENSO years, characterized by strong westerly winds, the intense eastward transfer of wave energy becomes prominent as early as October. This differs significantly from the situation manifested in independent nIOD years. The intensity of the energy-flux streamfunction/potential reaches its peak around November and then rapidly diminishes in December during both types of nIOD years. The present study provides an interpretation of wave energy transfer episodes in the upper ocean during the negative phase of the Indian Ocean dipole (IOD) based on the diagnosis of hindcast experiments. The results suggest that the reflection of Kelvin and Rossby waves at the eastern and western boundaries of the Indian Ocean (IO), respectively, accompanied by variations in thermocline depth, plays a crucial role in the development process of IOD events. Specifically, during the negative phase of the IOD, the tropical IO exhibits positive signals of energy-flux streamfunction in the Northern Hemisphere, along with positive signals of energy-flux potential associated with westerly wind anomalies occurring in October–December. These findings highlight the significance of these factors in shaping the characteristics of negative IOD events.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":"33 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpreting Negative IOD Events Based on the Transfer Routes of Wave Energy in the Upper Ocean\",\"authors\":\"Zimeng Li, H. Aiki\",\"doi\":\"10.1175/jpo-d-22-0267.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study adopts an energy-based approach to interpret the negative phase of Indian Ocean dipole (IOD) events. This is accomplished by diagnosing the output of hindcast experiments from 1958 to 2018 based on a linear ocean model. The authors have performed a composite analysis for a set of negative IOD (nIOD) events, distinguishing between independent nIOD events and concurrent nIOD events with El Niño–Southern Oscillation (ENSO). The focus is on investigating the mechanism of nIOD events in terms of wave energy transfer, employing a linear wave theory that considers the group velocity. The proposed diagnostic scheme offers a unified framework for studying the interaction between equatorial and off-equatorial waves. Both the first and third baroclinic modes exhibit interannual variations characterized by a distinct packet of eastward energy flux associated with equatorial Kelvin waves. During October–December, westerly wind anomalies induce the propagation of eastward-moving equatorial waves, leading to thermocline deepening in the central-eastern equatorial Indian Ocean, a feature absent during neutral IOD years. The development of wave energy demonstrates different patterns during nIOD events of various types. In concurrent nIOD–ENSO years, characterized by strong westerly winds, the intense eastward transfer of wave energy becomes prominent as early as October. This differs significantly from the situation manifested in independent nIOD years. The intensity of the energy-flux streamfunction/potential reaches its peak around November and then rapidly diminishes in December during both types of nIOD years. The present study provides an interpretation of wave energy transfer episodes in the upper ocean during the negative phase of the Indian Ocean dipole (IOD) based on the diagnosis of hindcast experiments. The results suggest that the reflection of Kelvin and Rossby waves at the eastern and western boundaries of the Indian Ocean (IO), respectively, accompanied by variations in thermocline depth, plays a crucial role in the development process of IOD events. Specifically, during the negative phase of the IOD, the tropical IO exhibits positive signals of energy-flux streamfunction in the Northern Hemisphere, along with positive signals of energy-flux potential associated with westerly wind anomalies occurring in October–December. These findings highlight the significance of these factors in shaping the characteristics of negative IOD events.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":\"33 12\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-22-0267.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-22-0267.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用基于能量的方法来解释印度洋偶极子(IOD)事件的负相。这是通过诊断基于线性海洋模式的 1958 年至 2018 年的后报实验输出来实现的。作者对一组负IOD(nIOD)事件进行了综合分析,区分了独立的nIOD事件和与厄尔尼诺-南方涛动(ENSO)同时发生的nIOD事件。重点是从波能传递的角度研究 nIOD 事件的机理,采用了考虑群速度的线性波理论。所提出的诊断方案为研究赤道波和离赤道波之间的相互作用提供了一个统一的框架。第一和第三气压模式都表现出年际变化,其特点是与赤道开尔文波相关的东向能量通量包明显。在 10 月至 12 月期间,西风异常会诱发向东移动的赤道波的传播,导致赤道印度洋中东部的温跃层加深,而在中性 IOD 年则不存在这一特征。在各种类型的 nIOD 事件中,波浪能量的发展呈现出不同的模式。在强西风的 nIOD-ENSO 并发年,波浪能量的强烈东移早在 10 月份就开始显现。这与独立的 nIOD 年所表现出的情况有很大不同。在两类 nIOD 年中,能量流函数/势能的强度都在 11 月左右达到顶峰,然后在 12 月迅速减弱。 本研究根据后报实验的诊断结果,对印度洋偶极子负相(IOD)期间上层海洋的波能传递事件进行了解释。结果表明,开尔文波和罗斯比波分别在印度洋(IO)东部和西部边界的反射,伴随着热层深度的变化,在印度洋偶极子事件的发展过程中起着至关重要的作用。具体来说,在 IOD 的负相期间,热带 IO 在北半球表现出能量流功能的正信号,同时在 10 月至 12 月出现与西风异常相关的能量流势的正信号。这些发现凸显了这些因素在形成负 IOD 事件特征方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpreting Negative IOD Events Based on the Transfer Routes of Wave Energy in the Upper Ocean
The present study adopts an energy-based approach to interpret the negative phase of Indian Ocean dipole (IOD) events. This is accomplished by diagnosing the output of hindcast experiments from 1958 to 2018 based on a linear ocean model. The authors have performed a composite analysis for a set of negative IOD (nIOD) events, distinguishing between independent nIOD events and concurrent nIOD events with El Niño–Southern Oscillation (ENSO). The focus is on investigating the mechanism of nIOD events in terms of wave energy transfer, employing a linear wave theory that considers the group velocity. The proposed diagnostic scheme offers a unified framework for studying the interaction between equatorial and off-equatorial waves. Both the first and third baroclinic modes exhibit interannual variations characterized by a distinct packet of eastward energy flux associated with equatorial Kelvin waves. During October–December, westerly wind anomalies induce the propagation of eastward-moving equatorial waves, leading to thermocline deepening in the central-eastern equatorial Indian Ocean, a feature absent during neutral IOD years. The development of wave energy demonstrates different patterns during nIOD events of various types. In concurrent nIOD–ENSO years, characterized by strong westerly winds, the intense eastward transfer of wave energy becomes prominent as early as October. This differs significantly from the situation manifested in independent nIOD years. The intensity of the energy-flux streamfunction/potential reaches its peak around November and then rapidly diminishes in December during both types of nIOD years. The present study provides an interpretation of wave energy transfer episodes in the upper ocean during the negative phase of the Indian Ocean dipole (IOD) based on the diagnosis of hindcast experiments. The results suggest that the reflection of Kelvin and Rossby waves at the eastern and western boundaries of the Indian Ocean (IO), respectively, accompanied by variations in thermocline depth, plays a crucial role in the development process of IOD events. Specifically, during the negative phase of the IOD, the tropical IO exhibits positive signals of energy-flux streamfunction in the Northern Hemisphere, along with positive signals of energy-flux potential associated with westerly wind anomalies occurring in October–December. These findings highlight the significance of these factors in shaping the characteristics of negative IOD events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信