Ni Luh Widyasari, I. N. Rai, Igb Sila Dharma, M. S. Mahendra
{"title":"利用超积累植物控制土地中重金属铅、铜、镉和铬含量的研究","authors":"Ni Luh Widyasari, I. N. Rai, Igb Sila Dharma, M. S. Mahendra","doi":"10.15243/jdmlm.2024.112.5159","DOIUrl":null,"url":null,"abstract":"This study aimed to determine the types of hyperaccumulator plants that can absorb the heavy metal content of Pb, Cu, Cd, Cr based on the values of bioaccumulation factors (BAF) and translocation factors (TF). Results of the analysis showed that BAF value of the hanjuang plant (Cordyline fruicosa), for heavy metal Pb was 0.369; Cu 0.442; Cd 0.055; Cr 0.078 and TF value for heavy metal Pb 1.572; Cu 0.964; Cd 0.108; Cr 1.358. Croton plant (Codiaeum variegatum), had a BAF value of Pb 0.021; Cu 0.060; Cd 0.000; Cr 0.003 and TF value of Pb 3.638; Cu 0.000; Cd 0.000; Cr 1.399. Sansevieria plant (Sansevieria trifasciata) had a BAF value of Pb 0.090; Cu 0.036; Cd 0.015; Cr 0.002 and TF value of Pb 0.410; Cu 0.334; Cd 0.222; Cr 0.726. Sunflower plant (Helianthus annuus) had a BAF value of Pb 0.022; Cu 0.094; Cd 0.308; Cr 0.001 and TF value of Pb 1.930; Cu 0.399; Cd 1.383; Cr 1.361. Based on a comparison of BAF values, hanjuang plant was the best hyperaccumulator plant capable of accumulating Pb, Cu, Cr with a phytoextraction mechanism and accumulating Cd with a phytostabilization mechanism. At the same time, sunflower a hyperaccumulator plant with the best translocation factor where the roots of sunflower plants absorbed Pb, Cu, Cd, Cr, which were then translocated to the stems and leaves optimally through a phytoextraction mechanism.","PeriodicalId":36513,"journal":{"name":"Journal of Degraded and Mining Lands Management","volume":"51 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of controlling the content heavy metals Pb, Cu, Cd, and Cr in land using hyperaccumulator plants\",\"authors\":\"Ni Luh Widyasari, I. N. Rai, Igb Sila Dharma, M. S. Mahendra\",\"doi\":\"10.15243/jdmlm.2024.112.5159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to determine the types of hyperaccumulator plants that can absorb the heavy metal content of Pb, Cu, Cd, Cr based on the values of bioaccumulation factors (BAF) and translocation factors (TF). Results of the analysis showed that BAF value of the hanjuang plant (Cordyline fruicosa), for heavy metal Pb was 0.369; Cu 0.442; Cd 0.055; Cr 0.078 and TF value for heavy metal Pb 1.572; Cu 0.964; Cd 0.108; Cr 1.358. Croton plant (Codiaeum variegatum), had a BAF value of Pb 0.021; Cu 0.060; Cd 0.000; Cr 0.003 and TF value of Pb 3.638; Cu 0.000; Cd 0.000; Cr 1.399. Sansevieria plant (Sansevieria trifasciata) had a BAF value of Pb 0.090; Cu 0.036; Cd 0.015; Cr 0.002 and TF value of Pb 0.410; Cu 0.334; Cd 0.222; Cr 0.726. Sunflower plant (Helianthus annuus) had a BAF value of Pb 0.022; Cu 0.094; Cd 0.308; Cr 0.001 and TF value of Pb 1.930; Cu 0.399; Cd 1.383; Cr 1.361. Based on a comparison of BAF values, hanjuang plant was the best hyperaccumulator plant capable of accumulating Pb, Cu, Cr with a phytoextraction mechanism and accumulating Cd with a phytostabilization mechanism. At the same time, sunflower a hyperaccumulator plant with the best translocation factor where the roots of sunflower plants absorbed Pb, Cu, Cd, Cr, which were then translocated to the stems and leaves optimally through a phytoextraction mechanism.\",\"PeriodicalId\":36513,\"journal\":{\"name\":\"Journal of Degraded and Mining Lands Management\",\"volume\":\"51 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Degraded and Mining Lands Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15243/jdmlm.2024.112.5159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Degraded and Mining Lands Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15243/jdmlm.2024.112.5159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Study of controlling the content heavy metals Pb, Cu, Cd, and Cr in land using hyperaccumulator plants
This study aimed to determine the types of hyperaccumulator plants that can absorb the heavy metal content of Pb, Cu, Cd, Cr based on the values of bioaccumulation factors (BAF) and translocation factors (TF). Results of the analysis showed that BAF value of the hanjuang plant (Cordyline fruicosa), for heavy metal Pb was 0.369; Cu 0.442; Cd 0.055; Cr 0.078 and TF value for heavy metal Pb 1.572; Cu 0.964; Cd 0.108; Cr 1.358. Croton plant (Codiaeum variegatum), had a BAF value of Pb 0.021; Cu 0.060; Cd 0.000; Cr 0.003 and TF value of Pb 3.638; Cu 0.000; Cd 0.000; Cr 1.399. Sansevieria plant (Sansevieria trifasciata) had a BAF value of Pb 0.090; Cu 0.036; Cd 0.015; Cr 0.002 and TF value of Pb 0.410; Cu 0.334; Cd 0.222; Cr 0.726. Sunflower plant (Helianthus annuus) had a BAF value of Pb 0.022; Cu 0.094; Cd 0.308; Cr 0.001 and TF value of Pb 1.930; Cu 0.399; Cd 1.383; Cr 1.361. Based on a comparison of BAF values, hanjuang plant was the best hyperaccumulator plant capable of accumulating Pb, Cu, Cr with a phytoextraction mechanism and accumulating Cd with a phytostabilization mechanism. At the same time, sunflower a hyperaccumulator plant with the best translocation factor where the roots of sunflower plants absorbed Pb, Cu, Cd, Cr, which were then translocated to the stems and leaves optimally through a phytoextraction mechanism.