{"title":"探究含有八-3,5-二烯-1,7-二炔基桥接配体的双核富碳配合物的电子结构","authors":"Michael R. Hall, S. Moggach, Paul J Low","doi":"10.3390/inorganics12010020","DOIUrl":null,"url":null,"abstract":"One electron oxidation of the monometallic alkenylacetylide complexes [Ru{C≡CC(R)=CH2}(dppe)Cp*] (1) and [Ru{C≡CC(R)=CH2}Cl(dppe)2] (2) (R = Ph (a); R = 4-MeS-C6H4 (b)) generates in each case a dinuclear bis(allenylidene) complex [{Ru}2{μ-C=C=C(R)–CH2–H2C–(R)C=C=C}][PF6]2 ({Ru} = Ru(dppe)Cp* ([3a,b][PF6]2); {Ru} = RuCl(dppe)2 ([4a,b][PF6]2), containing an unsaturated ethane bridge between both allenylidene moieties. Deprotonation of this ethane bridge results in the formation of the previously reported octa-3,5-diene-1,7-diyndiyl-bridged bimetallic species [{Ru}2{μ-C≡CC(R)=CH–HC=(R)CC≡C}] ({Ru} = Ru(dppe)Cp* (5a,b); {Ru} = RuCl(dppe)2 (6a,b). The isolation of these complexes illustrates a general synthetic route to these conjugated bimetallic species from monomeric alkenylacetylide precursors. Electrochemical and spectroelectrochemical investigations evince the ready formation of the representative redox series [5a]n+, and TD-DFT calculations performed on optimised structures featuring the simplified {Ru(dmpe)Cp} coordination sphere [{Ru(dmpe)Cp}2{μ-C≡CC(Ph)=HC–CH(Ph)CC≡C}]n+ ([5a†]n+) (n = 0, 1, 2) reveal significant delocalisation of the unpaired charge in the formally mixed-valent species (n = 1), consistent with Class III assignment within the Robin–Day classification scheme.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":"4 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Electronic Structure of Dinuclear Carbon-Rich Complexes Containing an Octa-3,5-diene-1,7-diyndiyl Bridging Ligand\",\"authors\":\"Michael R. Hall, S. Moggach, Paul J Low\",\"doi\":\"10.3390/inorganics12010020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One electron oxidation of the monometallic alkenylacetylide complexes [Ru{C≡CC(R)=CH2}(dppe)Cp*] (1) and [Ru{C≡CC(R)=CH2}Cl(dppe)2] (2) (R = Ph (a); R = 4-MeS-C6H4 (b)) generates in each case a dinuclear bis(allenylidene) complex [{Ru}2{μ-C=C=C(R)–CH2–H2C–(R)C=C=C}][PF6]2 ({Ru} = Ru(dppe)Cp* ([3a,b][PF6]2); {Ru} = RuCl(dppe)2 ([4a,b][PF6]2), containing an unsaturated ethane bridge between both allenylidene moieties. Deprotonation of this ethane bridge results in the formation of the previously reported octa-3,5-diene-1,7-diyndiyl-bridged bimetallic species [{Ru}2{μ-C≡CC(R)=CH–HC=(R)CC≡C}] ({Ru} = Ru(dppe)Cp* (5a,b); {Ru} = RuCl(dppe)2 (6a,b). The isolation of these complexes illustrates a general synthetic route to these conjugated bimetallic species from monomeric alkenylacetylide precursors. Electrochemical and spectroelectrochemical investigations evince the ready formation of the representative redox series [5a]n+, and TD-DFT calculations performed on optimised structures featuring the simplified {Ru(dmpe)Cp} coordination sphere [{Ru(dmpe)Cp}2{μ-C≡CC(Ph)=HC–CH(Ph)CC≡C}]n+ ([5a†]n+) (n = 0, 1, 2) reveal significant delocalisation of the unpaired charge in the formally mixed-valent species (n = 1), consistent with Class III assignment within the Robin–Day classification scheme.\",\"PeriodicalId\":13572,\"journal\":{\"name\":\"Inorganics\",\"volume\":\"4 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics12010020\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12010020","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Probing the Electronic Structure of Dinuclear Carbon-Rich Complexes Containing an Octa-3,5-diene-1,7-diyndiyl Bridging Ligand
One electron oxidation of the monometallic alkenylacetylide complexes [Ru{C≡CC(R)=CH2}(dppe)Cp*] (1) and [Ru{C≡CC(R)=CH2}Cl(dppe)2] (2) (R = Ph (a); R = 4-MeS-C6H4 (b)) generates in each case a dinuclear bis(allenylidene) complex [{Ru}2{μ-C=C=C(R)–CH2–H2C–(R)C=C=C}][PF6]2 ({Ru} = Ru(dppe)Cp* ([3a,b][PF6]2); {Ru} = RuCl(dppe)2 ([4a,b][PF6]2), containing an unsaturated ethane bridge between both allenylidene moieties. Deprotonation of this ethane bridge results in the formation of the previously reported octa-3,5-diene-1,7-diyndiyl-bridged bimetallic species [{Ru}2{μ-C≡CC(R)=CH–HC=(R)CC≡C}] ({Ru} = Ru(dppe)Cp* (5a,b); {Ru} = RuCl(dppe)2 (6a,b). The isolation of these complexes illustrates a general synthetic route to these conjugated bimetallic species from monomeric alkenylacetylide precursors. Electrochemical and spectroelectrochemical investigations evince the ready formation of the representative redox series [5a]n+, and TD-DFT calculations performed on optimised structures featuring the simplified {Ru(dmpe)Cp} coordination sphere [{Ru(dmpe)Cp}2{μ-C≡CC(Ph)=HC–CH(Ph)CC≡C}]n+ ([5a†]n+) (n = 0, 1, 2) reveal significant delocalisation of the unpaired charge in the formally mixed-valent species (n = 1), consistent with Class III assignment within the Robin–Day classification scheme.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD