{"title":"开发用于城市自动测绘的土壤抑制不透水表面积指数","authors":"Akib Javed, Zhenfeng Shao, Iffat Ara, Muhammad Nasar Ahmad, Enamul Huq, Nayyer Saleem, Fazlul Karim","doi":"10.14358/pers.23-00043r2","DOIUrl":null,"url":null,"abstract":"Expanding urban impervious surface area (ISA) mapping is crucial to sustainable development, urban planning, and environmental studies. Multispectral ISA mapping is challenging because of the mixed-pixel problems with bare soil. This study presents a novel approach using spectral and temporal information to develop a Soil-Suppressed Impervious Surface Area Index (SISAI) using the Landsat Operational Land Imager (OLI) data set, which reduces the soil but enhances the ISA signature. This study mapped the top 12 populated megacities using SISAI and achieved an over-all accuracy of 0.87 with an F1-score of 0.85. It also achieved a higher Spatial Dissimilarity Index between the ISA and bare soil. However, it is limited by bare gray soil and shadows of clouds and hills. SISAI encourages urban dynamics and inter-urban compari- son studies owing to its automatic and unsupervised methodology.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"14 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Soil-Suppressed Impervious Surface Area Index for Automatic Urban Mapping\",\"authors\":\"Akib Javed, Zhenfeng Shao, Iffat Ara, Muhammad Nasar Ahmad, Enamul Huq, Nayyer Saleem, Fazlul Karim\",\"doi\":\"10.14358/pers.23-00043r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expanding urban impervious surface area (ISA) mapping is crucial to sustainable development, urban planning, and environmental studies. Multispectral ISA mapping is challenging because of the mixed-pixel problems with bare soil. This study presents a novel approach using spectral and temporal information to develop a Soil-Suppressed Impervious Surface Area Index (SISAI) using the Landsat Operational Land Imager (OLI) data set, which reduces the soil but enhances the ISA signature. This study mapped the top 12 populated megacities using SISAI and achieved an over-all accuracy of 0.87 with an F1-score of 0.85. It also achieved a higher Spatial Dissimilarity Index between the ISA and bare soil. However, it is limited by bare gray soil and shadows of clouds and hills. SISAI encourages urban dynamics and inter-urban compari- son studies owing to its automatic and unsupervised methodology.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00043r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00043r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
扩大城市不透水表面积(ISA)绘图对于可持续发展、城市规划和环境研究至关重要。由于裸露土壤的混合像素问题,多光谱 ISA 测绘具有挑战性。本研究提出了一种使用光谱和时间信息的新方法,利用陆地卫星业务陆地成像仪(OLI)数据集开发土壤抑制不透水表面积指数(SISAI),该方法减少了土壤,但增强了 ISA 特征。这项研究利用 SISAI 绘制了人口最多的 12 个大城市的地图,总体精度达到 0.87,F1 分数为 0.85。ISA 与裸露土壤之间的空间差异指数也较高。但是,它受到裸露灰土以及云和山丘阴影的限制。由于其自动和无监督的方法,SISAI 鼓励城市动态和城市间比较研究。
Development of Soil-Suppressed Impervious Surface Area Index for Automatic Urban Mapping
Expanding urban impervious surface area (ISA) mapping is crucial to sustainable development, urban planning, and environmental studies. Multispectral ISA mapping is challenging because of the mixed-pixel problems with bare soil. This study presents a novel approach using spectral and temporal information to develop a Soil-Suppressed Impervious Surface Area Index (SISAI) using the Landsat Operational Land Imager (OLI) data set, which reduces the soil but enhances the ISA signature. This study mapped the top 12 populated megacities using SISAI and achieved an over-all accuracy of 0.87 with an F1-score of 0.85. It also achieved a higher Spatial Dissimilarity Index between the ISA and bare soil. However, it is limited by bare gray soil and shadows of clouds and hills. SISAI encourages urban dynamics and inter-urban compari- son studies owing to its automatic and unsupervised methodology.