{"title":"基于对比学习的长尾遥感双分支网络","authors":"Lei Zhang, Lijia Peng, Pengfei Xia, Chuyuan Wei, Chengwei Yang, Yanyan Zhang","doi":"10.14358/pers.23-00055r2","DOIUrl":null,"url":null,"abstract":"Deep learning has been widely used in remote sensing image classification and achieves many excellent results. These methods are all based on relatively balanced data sets. However, in real-world scenarios, many data sets belong to the long-tailed distribution, resulting in poor performance. In view of the good performance of contrastive learning in long-tailed image classification, a new dual-branch fusion learning classification model is proposed to fuse the discriminative features of remote sensing images with spatial data, making full use of valuable image representation information in imbalance data. This paper also presents a hybrid loss, which solves the problem of poor discrimination of extracted features caused by large intra-class variation and inter-class ambiguity. Extended experiments on three long-tailed remote sensing image classification data sets demonstrate the advantages of the proposed dual-branch model based on contrastive learning in long-tailed image classification.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"37 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-branch Branch Networks Based on Contrastive Learning for Long-Tailed Remote Sensing\",\"authors\":\"Lei Zhang, Lijia Peng, Pengfei Xia, Chuyuan Wei, Chengwei Yang, Yanyan Zhang\",\"doi\":\"10.14358/pers.23-00055r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has been widely used in remote sensing image classification and achieves many excellent results. These methods are all based on relatively balanced data sets. However, in real-world scenarios, many data sets belong to the long-tailed distribution, resulting in poor performance. In view of the good performance of contrastive learning in long-tailed image classification, a new dual-branch fusion learning classification model is proposed to fuse the discriminative features of remote sensing images with spatial data, making full use of valuable image representation information in imbalance data. This paper also presents a hybrid loss, which solves the problem of poor discrimination of extracted features caused by large intra-class variation and inter-class ambiguity. Extended experiments on three long-tailed remote sensing image classification data sets demonstrate the advantages of the proposed dual-branch model based on contrastive learning in long-tailed image classification.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"37 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00055r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00055r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual-branch Branch Networks Based on Contrastive Learning for Long-Tailed Remote Sensing
Deep learning has been widely used in remote sensing image classification and achieves many excellent results. These methods are all based on relatively balanced data sets. However, in real-world scenarios, many data sets belong to the long-tailed distribution, resulting in poor performance. In view of the good performance of contrastive learning in long-tailed image classification, a new dual-branch fusion learning classification model is proposed to fuse the discriminative features of remote sensing images with spatial data, making full use of valuable image representation information in imbalance data. This paper also presents a hybrid loss, which solves the problem of poor discrimination of extracted features caused by large intra-class variation and inter-class ambiguity. Extended experiments on three long-tailed remote sensing image classification data sets demonstrate the advantages of the proposed dual-branch model based on contrastive learning in long-tailed image classification.