地形复杂性和基于最大泊松盘采样的数字高程模型简化

Jingxian Dong, Fan Ming, Twaha Kabika, Jiayao Jiang, Siyuan Zhang, Aliaksandr Chervan, Zhukouskaya Natallia, Wenguang Hou
{"title":"地形复杂性和基于最大泊松盘采样的数字高程模型简化","authors":"Jingxian Dong, Fan Ming, Twaha Kabika, Jiayao Jiang, Siyuan Zhang, Aliaksandr Chervan, Zhukouskaya Natallia, Wenguang Hou","doi":"10.14358/pers.23-00023r2","DOIUrl":null,"url":null,"abstract":"With the rapid development of lidar, the accuracy and density of the Digital Elevation Model (DEM) point clouds have been continuously improved. However, in some applications, dense point cloud has no practical meaning. How to effectively sample from the dense points and maximize the preservation of terrain features is extremely important. This paper will propose a DEM sampling algorithm that utilizes terrain complexity and maximal Poisson-disk sampling to extract key feature points for adaptive DEM sampling. The algorithm estimates terrain complexity based on local terrain variation and prioritizes points with high complexity for sampling. The sampling radius is inversely proportional to terrain complexity, while ensuring that points within the radius of accepted samples are not considered new samples. This way makes more points of concern in the rugged regions. The results show that the proposed algorithm has higher global accuracy than the classic six sampling methods.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"45 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terrain Complexity and Maximal Poisson-Disk Sampling-Based Digital Elevation Model Simplification\",\"authors\":\"Jingxian Dong, Fan Ming, Twaha Kabika, Jiayao Jiang, Siyuan Zhang, Aliaksandr Chervan, Zhukouskaya Natallia, Wenguang Hou\",\"doi\":\"10.14358/pers.23-00023r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of lidar, the accuracy and density of the Digital Elevation Model (DEM) point clouds have been continuously improved. However, in some applications, dense point cloud has no practical meaning. How to effectively sample from the dense points and maximize the preservation of terrain features is extremely important. This paper will propose a DEM sampling algorithm that utilizes terrain complexity and maximal Poisson-disk sampling to extract key feature points for adaptive DEM sampling. The algorithm estimates terrain complexity based on local terrain variation and prioritizes points with high complexity for sampling. The sampling radius is inversely proportional to terrain complexity, while ensuring that points within the radius of accepted samples are not considered new samples. This way makes more points of concern in the rugged regions. The results show that the proposed algorithm has higher global accuracy than the classic six sampling methods.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00023r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00023r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着激光雷达的快速发展,数字高程模型(DEM)点云的精度和密度不断提高。然而,在某些应用中,密集的点云并没有实际意义。如何有效地对密集点进行采样,并最大限度地保留地形特征就显得极为重要。本文将提出一种 DEM 采样算法,利用地形复杂性和最大泊松盘采样提取关键特征点,进行自适应 DEM 采样。该算法根据局部地形变化估算地形复杂度,并优先对复杂度高的点进行采样。采样半径与地形复杂度成反比,同时确保在接受采样半径内的点不被视为新样本。这样,在崎岖地区就会有更多的点受到关注。 结果表明,与经典的六种采样方法相比,所提出的算法具有更高的全局精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Terrain Complexity and Maximal Poisson-Disk Sampling-Based Digital Elevation Model Simplification
With the rapid development of lidar, the accuracy and density of the Digital Elevation Model (DEM) point clouds have been continuously improved. However, in some applications, dense point cloud has no practical meaning. How to effectively sample from the dense points and maximize the preservation of terrain features is extremely important. This paper will propose a DEM sampling algorithm that utilizes terrain complexity and maximal Poisson-disk sampling to extract key feature points for adaptive DEM sampling. The algorithm estimates terrain complexity based on local terrain variation and prioritizes points with high complexity for sampling. The sampling radius is inversely proportional to terrain complexity, while ensuring that points within the radius of accepted samples are not considered new samples. This way makes more points of concern in the rugged regions. The results show that the proposed algorithm has higher global accuracy than the classic six sampling methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信