{"title":"碳纳米管增强 FG 复合材料机翼的扑翼研究与深度学习预测","authors":"Aseel J. Mohammed, H. K. Kadhom","doi":"10.1515/cls-2022-0218","DOIUrl":null,"url":null,"abstract":"Abstract The flutter of a composite wing reinforced with functionally graded carbon nanotubes (CNTs) has been investigated. A rectangular plate models a supersonic wing with cantilever boundary conditions. To determine displacement fields of a moderately thick plate, shear deformation theory is used. Using the Hamilton principle, a first-order piston theory was used to simulate supersonic airflow. This study examines four types of CNT thickness. Also, four different CNT distribution patterns are investigated. In a two-layer asymmetric composite, the effects of patch mass, mass distribution, fiber orientation angle, and distribution of CNTs were examined. Moreover, the results are compared and verified with other studies. A greater mass ratio led to a smaller flutter boundary, while a longer added mass increased the flutter boundary. A variation in the distribution pattern in CNT fiber orientation results in a distinct behavior of the flutter boundary for asymmetric composites with increasing orientation angles. The artificial neural network is utilized to predict the damping ratio, and the results showed great accuracy compared to the study results. Hyperparameter tuning is employed for better optimizing the predictive models.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"76 19","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flutter investigation and deep learning prediction of FG composite wing reinforced with carbon nanotube\",\"authors\":\"Aseel J. Mohammed, H. K. Kadhom\",\"doi\":\"10.1515/cls-2022-0218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The flutter of a composite wing reinforced with functionally graded carbon nanotubes (CNTs) has been investigated. A rectangular plate models a supersonic wing with cantilever boundary conditions. To determine displacement fields of a moderately thick plate, shear deformation theory is used. Using the Hamilton principle, a first-order piston theory was used to simulate supersonic airflow. This study examines four types of CNT thickness. Also, four different CNT distribution patterns are investigated. In a two-layer asymmetric composite, the effects of patch mass, mass distribution, fiber orientation angle, and distribution of CNTs were examined. Moreover, the results are compared and verified with other studies. A greater mass ratio led to a smaller flutter boundary, while a longer added mass increased the flutter boundary. A variation in the distribution pattern in CNT fiber orientation results in a distinct behavior of the flutter boundary for asymmetric composites with increasing orientation angles. The artificial neural network is utilized to predict the damping ratio, and the results showed great accuracy compared to the study results. Hyperparameter tuning is employed for better optimizing the predictive models.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"76 19\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Flutter investigation and deep learning prediction of FG composite wing reinforced with carbon nanotube
Abstract The flutter of a composite wing reinforced with functionally graded carbon nanotubes (CNTs) has been investigated. A rectangular plate models a supersonic wing with cantilever boundary conditions. To determine displacement fields of a moderately thick plate, shear deformation theory is used. Using the Hamilton principle, a first-order piston theory was used to simulate supersonic airflow. This study examines four types of CNT thickness. Also, four different CNT distribution patterns are investigated. In a two-layer asymmetric composite, the effects of patch mass, mass distribution, fiber orientation angle, and distribution of CNTs were examined. Moreover, the results are compared and verified with other studies. A greater mass ratio led to a smaller flutter boundary, while a longer added mass increased the flutter boundary. A variation in the distribution pattern in CNT fiber orientation results in a distinct behavior of the flutter boundary for asymmetric composites with increasing orientation angles. The artificial neural network is utilized to predict the damping ratio, and the results showed great accuracy compared to the study results. Hyperparameter tuning is employed for better optimizing the predictive models.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.