{"title":"具有通信功能的多代理深度强化学习调查","authors":"Changxi Zhu, Mehdi Dastani, Shihan Wang","doi":"10.1007/s10458-023-09633-6","DOIUrl":null,"url":null,"abstract":"<div><p>Communication is an effective mechanism for coordinating the behaviors of multiple agents, broadening their views of the environment, and to support their collaborations. In the field of multi-agent deep reinforcement learning (MADRL), agents can improve the overall learning performance and achieve their objectives by communication. Agents can communicate various types of messages, either to all agents or to specific agent groups, or conditioned on specific constraints. With the growing body of research work in MADRL with communication (Comm-MADRL), there is a lack of a systematic and structural approach to distinguish and classify existing Comm-MADRL approaches. In this paper, we survey recent works in the Comm-MADRL field and consider various aspects of communication that can play a role in designing and developing multi-agent reinforcement learning systems. With these aspects in mind, we propose 9 dimensions along which Comm-MADRL approaches can be analyzed, developed, and compared. By projecting existing works into the multi-dimensional space, we discover interesting trends. We also propose some novel directions for designing future Comm-MADRL systems through exploring possible combinations of the dimensions.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"38 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-023-09633-6.pdf","citationCount":"0","resultStr":"{\"title\":\"A survey of multi-agent deep reinforcement learning with communication\",\"authors\":\"Changxi Zhu, Mehdi Dastani, Shihan Wang\",\"doi\":\"10.1007/s10458-023-09633-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Communication is an effective mechanism for coordinating the behaviors of multiple agents, broadening their views of the environment, and to support their collaborations. In the field of multi-agent deep reinforcement learning (MADRL), agents can improve the overall learning performance and achieve their objectives by communication. Agents can communicate various types of messages, either to all agents or to specific agent groups, or conditioned on specific constraints. With the growing body of research work in MADRL with communication (Comm-MADRL), there is a lack of a systematic and structural approach to distinguish and classify existing Comm-MADRL approaches. In this paper, we survey recent works in the Comm-MADRL field and consider various aspects of communication that can play a role in designing and developing multi-agent reinforcement learning systems. With these aspects in mind, we propose 9 dimensions along which Comm-MADRL approaches can be analyzed, developed, and compared. By projecting existing works into the multi-dimensional space, we discover interesting trends. We also propose some novel directions for designing future Comm-MADRL systems through exploring possible combinations of the dimensions.</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10458-023-09633-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-023-09633-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09633-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A survey of multi-agent deep reinforcement learning with communication
Communication is an effective mechanism for coordinating the behaviors of multiple agents, broadening their views of the environment, and to support their collaborations. In the field of multi-agent deep reinforcement learning (MADRL), agents can improve the overall learning performance and achieve their objectives by communication. Agents can communicate various types of messages, either to all agents or to specific agent groups, or conditioned on specific constraints. With the growing body of research work in MADRL with communication (Comm-MADRL), there is a lack of a systematic and structural approach to distinguish and classify existing Comm-MADRL approaches. In this paper, we survey recent works in the Comm-MADRL field and consider various aspects of communication that can play a role in designing and developing multi-agent reinforcement learning systems. With these aspects in mind, we propose 9 dimensions along which Comm-MADRL approaches can be analyzed, developed, and compared. By projecting existing works into the multi-dimensional space, we discover interesting trends. We also propose some novel directions for designing future Comm-MADRL systems through exploring possible combinations of the dimensions.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.