小鼠骨髓造血的时间和单细胞分辨模型

Cell stem cell Pub Date : 2024-02-01 Epub Date: 2024-01-05 DOI:10.1016/j.stem.2023.12.001
Iwo Kucinski, Joana Campos, Melania Barile, Francesco Severi, Natacha Bohin, Pedro N Moreira, Lewis Allen, Hannah Lawson, Myriam L R Haltalli, Sarah J Kinston, Dónal O'Carroll, Kamil R Kranc, Berthold Göttgens
{"title":"小鼠骨髓造血的时间和单细胞分辨模型","authors":"Iwo Kucinski, Joana Campos, Melania Barile, Francesco Severi, Natacha Bohin, Pedro N Moreira, Lewis Allen, Hannah Lawson, Myriam L R Haltalli, Sarah J Kinston, Dónal O'Carroll, Kamil R Kranc, Berthold Göttgens","doi":"10.1016/j.stem.2023.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>The paradigmatic hematopoietic tree model is increasingly recognized to be limited, as it is based on heterogeneous populations largely defined by non-homeostatic assays testing cell fate potentials. Here, we combine persistent labeling with time-series single-cell RNA sequencing to build a real-time, quantitative model of in vivo tissue dynamics for murine bone marrow hematopoiesis. We couple cascading single-cell expression patterns with dynamic changes in differentiation and growth speeds. The resulting explicit linkage between molecular states and cellular behavior reveals widely varying self-renewal and differentiation properties across distinct lineages. Transplanted stem cells show strong acceleration of differentiation at specific stages of erythroid and neutrophil production, illustrating how the model can quantify the impact of perturbations. Our reconstruction of dynamic behavior from snapshot measurements is akin to how a kinetoscope allows sequential images to merge into a movie. We posit that this approach is generally applicable to understanding tissue-scale dynamics at high resolution.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":" ","pages":"244-259.e10"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615671/pdf/","citationCount":"0","resultStr":"{\"title\":\"A time- and single-cell-resolved model of murine bone marrow hematopoiesis.\",\"authors\":\"Iwo Kucinski, Joana Campos, Melania Barile, Francesco Severi, Natacha Bohin, Pedro N Moreira, Lewis Allen, Hannah Lawson, Myriam L R Haltalli, Sarah J Kinston, Dónal O'Carroll, Kamil R Kranc, Berthold Göttgens\",\"doi\":\"10.1016/j.stem.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paradigmatic hematopoietic tree model is increasingly recognized to be limited, as it is based on heterogeneous populations largely defined by non-homeostatic assays testing cell fate potentials. Here, we combine persistent labeling with time-series single-cell RNA sequencing to build a real-time, quantitative model of in vivo tissue dynamics for murine bone marrow hematopoiesis. We couple cascading single-cell expression patterns with dynamic changes in differentiation and growth speeds. The resulting explicit linkage between molecular states and cellular behavior reveals widely varying self-renewal and differentiation properties across distinct lineages. Transplanted stem cells show strong acceleration of differentiation at specific stages of erythroid and neutrophil production, illustrating how the model can quantify the impact of perturbations. Our reconstruction of dynamic behavior from snapshot measurements is akin to how a kinetoscope allows sequential images to merge into a movie. We posit that this approach is generally applicable to understanding tissue-scale dynamics at high resolution.</p>\",\"PeriodicalId\":93928,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\" \",\"pages\":\"244-259.e10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615671/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2023.12.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.stem.2023.12.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们越来越认识到,典型的造血树模型是有局限性的,因为它是建立在异质群体的基础上的,而异质群体主要是由测试细胞命运潜能的非同源试验确定的。在这里,我们将持续标记与时间序列单细胞 RNA 测序相结合,为小鼠骨髓造血建立了一个实时、定量的体内组织动态模型。我们将级联单细胞表达模式与分化和生长速度的动态变化结合起来。由此产生的分子状态与细胞行为之间的明确联系,揭示了不同品系之间千差万别的自我更新和分化特性。移植干细胞在红细胞和中性粒细胞生成的特定阶段显示出强烈的分化加速,说明了该模型如何量化扰动的影响。我们从快照测量中重建动态行为的方法,类似于动态显微镜如何将连续图像合并成一部电影。我们认为这种方法普遍适用于以高分辨率理解组织尺度的动态变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A time- and single-cell-resolved model of murine bone marrow hematopoiesis.

A time- and single-cell-resolved model of murine bone marrow hematopoiesis.

The paradigmatic hematopoietic tree model is increasingly recognized to be limited, as it is based on heterogeneous populations largely defined by non-homeostatic assays testing cell fate potentials. Here, we combine persistent labeling with time-series single-cell RNA sequencing to build a real-time, quantitative model of in vivo tissue dynamics for murine bone marrow hematopoiesis. We couple cascading single-cell expression patterns with dynamic changes in differentiation and growth speeds. The resulting explicit linkage between molecular states and cellular behavior reveals widely varying self-renewal and differentiation properties across distinct lineages. Transplanted stem cells show strong acceleration of differentiation at specific stages of erythroid and neutrophil production, illustrating how the model can quantify the impact of perturbations. Our reconstruction of dynamic behavior from snapshot measurements is akin to how a kinetoscope allows sequential images to merge into a movie. We posit that this approach is generally applicable to understanding tissue-scale dynamics at high resolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信