B. Duderija , F. Sahin , D. Meinderink , J.C. Calderón-Gómez , H.C. Schmidt , W. Homberg , G. Grundmeier , A. González-Orive
{"title":"在钢上电聚合丙烯酸,通过塑性变形增强接合效果","authors":"B. Duderija , F. Sahin , D. Meinderink , J.C. Calderón-Gómez , H.C. Schmidt , W. Homberg , G. Grundmeier , A. González-Orive","doi":"10.1016/j.jajp.2023.100181","DOIUrl":null,"url":null,"abstract":"<div><p>Resource-efficient electrochemical polymerization of acrylic acid (AA) on steel (DC04), from mildly acid Zn<sup>2+</sup>/ AA-containing aqueous solutions, is presented as an effective and sustainable thin film technology which allows for a precise control of the polymer thickness and morphology. The steel substrates were potentiostatically polarized to -1.4 V (vs. Ag/AgCl) or cycled between +0.1 to -1.4 V (vs. Ag/AgCl) in a degassed 2.0 M AA and 0.2 M ZnCl<sub>2</sub>-containing aqueous electrolyte solution at pH 6. FE-SEM, AFM, FT-IRRAS, XPS, and electrochemical measurements shed light on the structural and chemical features exhibited by the as-prepared polyacrylic acid (PAA) thin films. When PAA-modified DC04 plates are joined to Al EN AW-1050A H24 specimens by plastic deformation using cold pressure welding (CPW), tensile strength testing unveiled the macroscopic interfacial adhesion-promoting capabilities exhibited by PAA layers to the opposing aluminum oxide surfaces. Carboxylate moieties present in the PAA are shown to form stable chemical bonds with metal oxide surfaces and with amine-epoxy-based resins. Interestingly, higher maximum shear force values are obtained for the PAA films when Zn metallic deposits are not present in the organic layer, but, when these welded specimens are heated up to 200 °C in a N<sub>2</sub> atmosphere, it occurred exactly the opposite: Zn particle-containing PAA films showed the highest maximum shear force values for the same deposition time.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"9 ","pages":"Article 100181"},"PeriodicalIF":3.8000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330923000432/pdfft?md5=25fa3260d6baf8151d08076dc2b62956&pid=1-s2.0-S2666330923000432-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electropolymerization of acrylic acid on steel for enhanced joining by plastic deformation\",\"authors\":\"B. Duderija , F. Sahin , D. Meinderink , J.C. Calderón-Gómez , H.C. Schmidt , W. Homberg , G. Grundmeier , A. González-Orive\",\"doi\":\"10.1016/j.jajp.2023.100181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Resource-efficient electrochemical polymerization of acrylic acid (AA) on steel (DC04), from mildly acid Zn<sup>2+</sup>/ AA-containing aqueous solutions, is presented as an effective and sustainable thin film technology which allows for a precise control of the polymer thickness and morphology. The steel substrates were potentiostatically polarized to -1.4 V (vs. Ag/AgCl) or cycled between +0.1 to -1.4 V (vs. Ag/AgCl) in a degassed 2.0 M AA and 0.2 M ZnCl<sub>2</sub>-containing aqueous electrolyte solution at pH 6. FE-SEM, AFM, FT-IRRAS, XPS, and electrochemical measurements shed light on the structural and chemical features exhibited by the as-prepared polyacrylic acid (PAA) thin films. When PAA-modified DC04 plates are joined to Al EN AW-1050A H24 specimens by plastic deformation using cold pressure welding (CPW), tensile strength testing unveiled the macroscopic interfacial adhesion-promoting capabilities exhibited by PAA layers to the opposing aluminum oxide surfaces. Carboxylate moieties present in the PAA are shown to form stable chemical bonds with metal oxide surfaces and with amine-epoxy-based resins. Interestingly, higher maximum shear force values are obtained for the PAA films when Zn metallic deposits are not present in the organic layer, but, when these welded specimens are heated up to 200 °C in a N<sub>2</sub> atmosphere, it occurred exactly the opposite: Zn particle-containing PAA films showed the highest maximum shear force values for the same deposition time.</p></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"9 \",\"pages\":\"Article 100181\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666330923000432/pdfft?md5=25fa3260d6baf8151d08076dc2b62956&pid=1-s2.0-S2666330923000432-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330923000432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330923000432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在钢 (DC04) 上利用含弱酸性 Zn2+/ AA 的水溶液进行丙烯酸 (AA) 的资源节约型电化学聚合,是一种有效且可持续的薄膜技术,可精确控制聚合物的厚度和形态。在 pH 值为 6 的脱气 2.0 M AA 和 0.2 M ZnCl2- 含水电解质溶液中,将钢基板静电极化至 -1.4 V(相对于 Ag/AgCl),或在 +0.1 至 -1.4 V(相对于 Ag/AgCl)之间循环。FE-SEM、AFM、FT-IRRAS、XPS 和电化学测量揭示了制备的聚丙烯酸 (PAA) 薄膜的结构和化学特征。当使用冷压焊(CPW)通过塑性变形将 PAA 改性的 DC04 板与 Al EN AW-1050A H24 试样连接在一起时,拉伸强度测试揭示了 PAA 层对对立的氧化铝表面所表现出的宏观界面粘附促进能力。PAA 中的羧酸盐分子可与金属氧化物表面和胺环氧树脂形成稳定的化学键。有趣的是,当有机层中不存在金属锌沉积物时,PAA 薄膜会获得更高的最大剪切力值,但当这些焊接试样在氮气环境中加热到 200 °C 时,情况恰恰相反:在相同的沉积时间内,含锌微粒的 PAA 薄膜显示出最高的最大剪切力值。
Electropolymerization of acrylic acid on steel for enhanced joining by plastic deformation
Resource-efficient electrochemical polymerization of acrylic acid (AA) on steel (DC04), from mildly acid Zn2+/ AA-containing aqueous solutions, is presented as an effective and sustainable thin film technology which allows for a precise control of the polymer thickness and morphology. The steel substrates were potentiostatically polarized to -1.4 V (vs. Ag/AgCl) or cycled between +0.1 to -1.4 V (vs. Ag/AgCl) in a degassed 2.0 M AA and 0.2 M ZnCl2-containing aqueous electrolyte solution at pH 6. FE-SEM, AFM, FT-IRRAS, XPS, and electrochemical measurements shed light on the structural and chemical features exhibited by the as-prepared polyacrylic acid (PAA) thin films. When PAA-modified DC04 plates are joined to Al EN AW-1050A H24 specimens by plastic deformation using cold pressure welding (CPW), tensile strength testing unveiled the macroscopic interfacial adhesion-promoting capabilities exhibited by PAA layers to the opposing aluminum oxide surfaces. Carboxylate moieties present in the PAA are shown to form stable chemical bonds with metal oxide surfaces and with amine-epoxy-based resins. Interestingly, higher maximum shear force values are obtained for the PAA films when Zn metallic deposits are not present in the organic layer, but, when these welded specimens are heated up to 200 °C in a N2 atmosphere, it occurred exactly the opposite: Zn particle-containing PAA films showed the highest maximum shear force values for the same deposition time.