Xiaomin Liang, Megan L Koleske, Jesse Yang, Yurong Lai
{"title":"建立人类 OATP 底物的预测性 PBPK 模型:以匹伐他汀为例,早期评估临床药代动力学变异的战略框架。","authors":"Xiaomin Liang, Megan L Koleske, Jesse Yang, Yurong Lai","doi":"10.1208/s12248-023-00882-7","DOIUrl":null,"url":null,"abstract":"<p><p>To select a drug candidate for clinical development, accurately and promptly predicting human pharmacokinetic (PK) profiles, assessing drug-drug interactions (DDIs), and anticipating potential PK variations in disease populations are crucial steps in drug discovery. The complexity of predicting human PK significantly increases when hepatic transporters are involved in drug clearance (CL) and volume of distribution (V<sub>ss</sub>). A strategic framework is developed here, utilizing pitavastatin as an example. The framework includes the construction of a monkey physiologically-based PK (PBPK) model, model calibration to obtain scaling factors (SF) of in vitro-in vivo extrapolation (IVIVE) for various clearance parameters, human model development and validation, and assessment of DDIs and PK variations in disease populations. Through incorporating in vitro human parameters and calibrated SFs from the monkey model of 3.45, 0.14, and 1.17 for CL<sub>int,active</sub>, CL<sub>int,passive</sub>, and CL<sub>int,bile</sub>, respectively, and together with the relative fraction transported by individual transporters obtained from in vitro studies and the optimized K<sub>i</sub> values for OATP inhibition, the model reasonably captured observed pitavastatin PK profiles, DDIs and PK variations in human subjects carrying genetic polymorphisms, i.e., AUC within 20%. Lastly, when applying the functional reduction based on measured OATP1B biomarkers, the model adequately predicted PK changes in the hepatic impairment population. The present study presents a strategic framework for early-stage drug development, enabling the prediction of PK profiles and assessment of PK variations in scenarios like DDIs, genetic polymorphism, and hepatic impairment-related disease states, specifically focusing on OATP substrates.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"26 1","pages":"13"},"PeriodicalIF":5.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building a Predictive PBPK Model for Human OATP Substrates: a Strategic Framework for Early Evaluation of Clinical Pharmacokinetic Variations Using Pitavastatin as an Example.\",\"authors\":\"Xiaomin Liang, Megan L Koleske, Jesse Yang, Yurong Lai\",\"doi\":\"10.1208/s12248-023-00882-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To select a drug candidate for clinical development, accurately and promptly predicting human pharmacokinetic (PK) profiles, assessing drug-drug interactions (DDIs), and anticipating potential PK variations in disease populations are crucial steps in drug discovery. The complexity of predicting human PK significantly increases when hepatic transporters are involved in drug clearance (CL) and volume of distribution (V<sub>ss</sub>). A strategic framework is developed here, utilizing pitavastatin as an example. The framework includes the construction of a monkey physiologically-based PK (PBPK) model, model calibration to obtain scaling factors (SF) of in vitro-in vivo extrapolation (IVIVE) for various clearance parameters, human model development and validation, and assessment of DDIs and PK variations in disease populations. Through incorporating in vitro human parameters and calibrated SFs from the monkey model of 3.45, 0.14, and 1.17 for CL<sub>int,active</sub>, CL<sub>int,passive</sub>, and CL<sub>int,bile</sub>, respectively, and together with the relative fraction transported by individual transporters obtained from in vitro studies and the optimized K<sub>i</sub> values for OATP inhibition, the model reasonably captured observed pitavastatin PK profiles, DDIs and PK variations in human subjects carrying genetic polymorphisms, i.e., AUC within 20%. Lastly, when applying the functional reduction based on measured OATP1B biomarkers, the model adequately predicted PK changes in the hepatic impairment population. The present study presents a strategic framework for early-stage drug development, enabling the prediction of PK profiles and assessment of PK variations in scenarios like DDIs, genetic polymorphism, and hepatic impairment-related disease states, specifically focusing on OATP substrates.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":\"26 1\",\"pages\":\"13\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-023-00882-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-023-00882-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Building a Predictive PBPK Model for Human OATP Substrates: a Strategic Framework for Early Evaluation of Clinical Pharmacokinetic Variations Using Pitavastatin as an Example.
To select a drug candidate for clinical development, accurately and promptly predicting human pharmacokinetic (PK) profiles, assessing drug-drug interactions (DDIs), and anticipating potential PK variations in disease populations are crucial steps in drug discovery. The complexity of predicting human PK significantly increases when hepatic transporters are involved in drug clearance (CL) and volume of distribution (Vss). A strategic framework is developed here, utilizing pitavastatin as an example. The framework includes the construction of a monkey physiologically-based PK (PBPK) model, model calibration to obtain scaling factors (SF) of in vitro-in vivo extrapolation (IVIVE) for various clearance parameters, human model development and validation, and assessment of DDIs and PK variations in disease populations. Through incorporating in vitro human parameters and calibrated SFs from the monkey model of 3.45, 0.14, and 1.17 for CLint,active, CLint,passive, and CLint,bile, respectively, and together with the relative fraction transported by individual transporters obtained from in vitro studies and the optimized Ki values for OATP inhibition, the model reasonably captured observed pitavastatin PK profiles, DDIs and PK variations in human subjects carrying genetic polymorphisms, i.e., AUC within 20%. Lastly, when applying the functional reduction based on measured OATP1B biomarkers, the model adequately predicted PK changes in the hepatic impairment population. The present study presents a strategic framework for early-stage drug development, enabling the prediction of PK profiles and assessment of PK variations in scenarios like DDIs, genetic polymorphism, and hepatic impairment-related disease states, specifically focusing on OATP substrates.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.