{"title":"哺乳动物大脑衰老过程中的蛋白质周转失调。","authors":"Nalini R Rao, Arun Upadhyay, Jeffrey N Savas","doi":"10.1038/s44320-023-00009-2","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient protein turnover is essential for cellular homeostasis and organ function. Loss of proteostasis is a hallmark of aging culminating in severe dysfunction of protein turnover. To investigate protein turnover dynamics as a function of age, we performed continuous in vivo metabolic stable isotope labeling in mice along the aging continuum. First, we discovered that the brain proteome uniquely undergoes dynamic turnover fluctuations during aging compared to heart and liver tissue. Second, trends in protein turnover in the brain proteome during aging showed sex-specific differences that were tightly tied to cellular compartments. Next, parallel analyses of the insoluble proteome revealed that several cellular compartments experience hampered turnover, in part due to misfolding. Finally, we found that age-associated fluctuations in proteasome activity were associated with the turnover of core proteolytic subunits, which was recapitulated by pharmacological suppression of proteasome activity. Taken together, our study provides a proteome-wide atlas of protein turnover across the aging continuum and reveals a link between the turnover of individual proteasome subunits and the age-associated decline in proteasome activity.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"120-139"},"PeriodicalIF":8.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Derailed protein turnover in the aging mammalian brain.\",\"authors\":\"Nalini R Rao, Arun Upadhyay, Jeffrey N Savas\",\"doi\":\"10.1038/s44320-023-00009-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient protein turnover is essential for cellular homeostasis and organ function. Loss of proteostasis is a hallmark of aging culminating in severe dysfunction of protein turnover. To investigate protein turnover dynamics as a function of age, we performed continuous in vivo metabolic stable isotope labeling in mice along the aging continuum. First, we discovered that the brain proteome uniquely undergoes dynamic turnover fluctuations during aging compared to heart and liver tissue. Second, trends in protein turnover in the brain proteome during aging showed sex-specific differences that were tightly tied to cellular compartments. Next, parallel analyses of the insoluble proteome revealed that several cellular compartments experience hampered turnover, in part due to misfolding. Finally, we found that age-associated fluctuations in proteasome activity were associated with the turnover of core proteolytic subunits, which was recapitulated by pharmacological suppression of proteasome activity. Taken together, our study provides a proteome-wide atlas of protein turnover across the aging continuum and reveals a link between the turnover of individual proteasome subunits and the age-associated decline in proteasome activity.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"120-139\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-023-00009-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-023-00009-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Derailed protein turnover in the aging mammalian brain.
Efficient protein turnover is essential for cellular homeostasis and organ function. Loss of proteostasis is a hallmark of aging culminating in severe dysfunction of protein turnover. To investigate protein turnover dynamics as a function of age, we performed continuous in vivo metabolic stable isotope labeling in mice along the aging continuum. First, we discovered that the brain proteome uniquely undergoes dynamic turnover fluctuations during aging compared to heart and liver tissue. Second, trends in protein turnover in the brain proteome during aging showed sex-specific differences that were tightly tied to cellular compartments. Next, parallel analyses of the insoluble proteome revealed that several cellular compartments experience hampered turnover, in part due to misfolding. Finally, we found that age-associated fluctuations in proteasome activity were associated with the turnover of core proteolytic subunits, which was recapitulated by pharmacological suppression of proteasome activity. Taken together, our study provides a proteome-wide atlas of protein turnover across the aging continuum and reveals a link between the turnover of individual proteasome subunits and the age-associated decline in proteasome activity.
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.