{"title":"高连接单色子图的更多拉姆齐理论","authors":"Michael Hrušák, Saharon Shelah, Jing Zhang","doi":"10.4153/s0008414x23000767","DOIUrl":null,"url":null,"abstract":"<p>An infinite graph is said to be highly connected if the induced subgraph on the complement of any set of vertices of smaller size is connected. We continue the study of weaker versions of Ramsey’s theorem on uncountable cardinals asserting that if we color edges of the complete graph, we can find a large highly connected monochromatic subgraph. In particular, several questions of Bergfalk, Hrušák, and Shelah (2021, <span>Acta Mathematica Hungarica</span> 163, 309–322) are answered by showing that assuming the consistency of suitable large cardinals, the following are relatively consistent with ZFC: </p><ul><li><p><span>•</span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\kappa \\to _{hc} (\\kappa )^2_\\omega $</span></span></img></span></span> for every regular cardinal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\kappa \\geq \\aleph _2$</span></span></img></span></span>,</p></li><li><p><span>•</span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\neg \\mathsf {CH}+ \\aleph _2 \\to _{hc} (\\aleph _1)^2_\\omega $</span></span></img></span></span>.</p></li></ul><p></p><p>Building on a work of Lambie-Hanson (2023, Fundamenta Mathematicae. 260(2):181–197), we also show that </p><ul><li><p><span>•</span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\aleph _2 \\to _{hc} [\\aleph _2]^2_{\\omega ,2}$</span></span></img></span></span> is consistent with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\neg \\mathsf {CH}$</span></span></img></span></span>.</p></li></ul><p></p><p>To prove these results, we use the existence of ideals with strong combinatorial properties after collapsing suitable large cardinals.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More Ramsey theory for highly connected monochromatic subgraphs\",\"authors\":\"Michael Hrušák, Saharon Shelah, Jing Zhang\",\"doi\":\"10.4153/s0008414x23000767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An infinite graph is said to be highly connected if the induced subgraph on the complement of any set of vertices of smaller size is connected. We continue the study of weaker versions of Ramsey’s theorem on uncountable cardinals asserting that if we color edges of the complete graph, we can find a large highly connected monochromatic subgraph. In particular, several questions of Bergfalk, Hrušák, and Shelah (2021, <span>Acta Mathematica Hungarica</span> 163, 309–322) are answered by showing that assuming the consistency of suitable large cardinals, the following are relatively consistent with ZFC: </p><ul><li><p><span>•</span> <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\kappa \\\\to _{hc} (\\\\kappa )^2_\\\\omega $</span></span></img></span></span> for every regular cardinal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\kappa \\\\geq \\\\aleph _2$</span></span></img></span></span>,</p></li><li><p><span>•</span> <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\neg \\\\mathsf {CH}+ \\\\aleph _2 \\\\to _{hc} (\\\\aleph _1)^2_\\\\omega $</span></span></img></span></span>.</p></li></ul><p></p><p>Building on a work of Lambie-Hanson (2023, Fundamenta Mathematicae. 260(2):181–197), we also show that </p><ul><li><p><span>•</span> <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\aleph _2 \\\\to _{hc} [\\\\aleph _2]^2_{\\\\omega ,2}$</span></span></img></span></span> is consistent with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104113709561-0705:S0008414X23000767:S0008414X23000767_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\neg \\\\mathsf {CH}$</span></span></img></span></span>.</p></li></ul><p></p><p>To prove these results, we use the existence of ideals with strong combinatorial properties after collapsing suitable large cardinals.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
如果一个无限图的任意较小顶点集的补集上的诱导子图是连通的,那么这个无限图就被称为高度连通图。我们继续研究拉姆齐定理在不可数红心上的弱化版本,该定理断言,如果我们给完整图的边着色,就能找到一个大的高连接单色子图。特别是,贝格法尔克、赫鲁沙克和谢拉赫(2021,匈牙利数学法 163,309-322)的几个问题通过证明假设合适的大红心图的一致性而得到了解答,即下列红心图与 ZFC 相对一致:- $\kappa \to _{hc} (\kappa )^2_\omega $ for every regular cardinal $\kappa \geq \aleph _2$,- $\neg \mathsf {CH}+ \aleph _2 \to _{hc} (\aleph _1)^2_\omega $.Building on a work of Lambie-Hanson (2023, Fundamenta Mathematicae.260(2):181-197) 的基础上,我们还证明了- $\aleph _2 \to _{hc} [\aleph _2]^2_{\omega ,2}$ 与 $\neg \mathsf {CH}$ 是一致的。为了证明这些结果,我们使用了在折叠合适的大红心之后具有强组合性质的理想的存在性。
More Ramsey theory for highly connected monochromatic subgraphs
An infinite graph is said to be highly connected if the induced subgraph on the complement of any set of vertices of smaller size is connected. We continue the study of weaker versions of Ramsey’s theorem on uncountable cardinals asserting that if we color edges of the complete graph, we can find a large highly connected monochromatic subgraph. In particular, several questions of Bergfalk, Hrušák, and Shelah (2021, Acta Mathematica Hungarica 163, 309–322) are answered by showing that assuming the consistency of suitable large cardinals, the following are relatively consistent with ZFC:
•$\kappa \to _{hc} (\kappa )^2_\omega $ for every regular cardinal $\kappa \geq \aleph _2$,