{"title":"关于群上的雷利奇-康德拉乔夫定理的特征和布洛赫谱单元方程","authors":"Vernny Ccajma, Wladimir Neves, Jean Silva","doi":"10.1007/s00030-023-00905-4","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the Rellich–Kondrachov Theorem on Groups. We establish some conditions which characterize in a precise manner important properties related to this theorem and the Sobolev spaces on groups involved on it. The main motivation to study the Rellich–Kondrachov Theorem on Groups comes from the Bloch spectral cell equation, which is an eigenvalue-eigenfunction problem associated with the assymptotic limit of the anisotropic Schrödinger equation.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a characterization of the Rellich–Kondrachov theorem on groups and the Bloch spectral cell equation\",\"authors\":\"Vernny Ccajma, Wladimir Neves, Jean Silva\",\"doi\":\"10.1007/s00030-023-00905-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the Rellich–Kondrachov Theorem on Groups. We establish some conditions which characterize in a precise manner important properties related to this theorem and the Sobolev spaces on groups involved on it. The main motivation to study the Rellich–Kondrachov Theorem on Groups comes from the Bloch spectral cell equation, which is an eigenvalue-eigenfunction problem associated with the assymptotic limit of the anisotropic Schrödinger equation.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00905-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00905-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a characterization of the Rellich–Kondrachov theorem on groups and the Bloch spectral cell equation
This paper is concerned with the Rellich–Kondrachov Theorem on Groups. We establish some conditions which characterize in a precise manner important properties related to this theorem and the Sobolev spaces on groups involved on it. The main motivation to study the Rellich–Kondrachov Theorem on Groups comes from the Bloch spectral cell equation, which is an eigenvalue-eigenfunction problem associated with the assymptotic limit of the anisotropic Schrödinger equation.