广义库默尔型六面体和 K3 曲面

IF 1.3 1区 数学 Q1 MATHEMATICS
Salvatore Floccari
{"title":"广义库默尔型六面体和 K3 曲面","authors":"Salvatore Floccari","doi":"10.1112/s0010437x23007625","DOIUrl":null,"url":null,"abstract":"<p>We prove that any hyper-Kähler sixfold <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$K$</span></span></img></span></span> of generalized Kummer type has a naturally associated manifold <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Y_K$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {K}3^{[3]}$</span></span></img></span></span> type. It is obtained as crepant resolution of the quotient of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$K$</span></span></img></span></span> by a group of symplectic involutions acting trivially on its second cohomology. When <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$K$</span></span></img></span></span> is projective, the variety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Y_K$</span></span></img></span></span> is birational to a moduli space of stable sheaves on a uniquely determined projective <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {K}3$</span></span></img></span></span> surface <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$S_K$</span></span></img></span></span>. As an application of this construction we show that the Kuga–Satake correspondence is algebraic for the K3 surfaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$S_K$</span></span></img></span></span>, producing infinitely many new families of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {K}3$</span></span></img></span></span> surfaces of general Picard rank <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$16$</span></span></img></span></span> satisfying the Kuga–Satake Hodge conjecture.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"20 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sixfolds of generalized Kummer type and K3 surfaces\",\"authors\":\"Salvatore Floccari\",\"doi\":\"10.1112/s0010437x23007625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that any hyper-Kähler sixfold <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K$</span></span></img></span></span> of generalized Kummer type has a naturally associated manifold <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Y_K$</span></span></img></span></span> of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {K}3^{[3]}$</span></span></img></span></span> type. It is obtained as crepant resolution of the quotient of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K$</span></span></img></span></span> by a group of symplectic involutions acting trivially on its second cohomology. When <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K$</span></span></img></span></span> is projective, the variety <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Y_K$</span></span></img></span></span> is birational to a moduli space of stable sheaves on a uniquely determined projective <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {K}3$</span></span></img></span></span> surface <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_K$</span></span></img></span></span>. As an application of this construction we show that the Kuga–Satake correspondence is algebraic for the K3 surfaces <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_K$</span></span></img></span></span>, producing infinitely many new families of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {K}3$</span></span></img></span></span> surfaces of general Picard rank <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175655345-0074:S0010437X23007625:S0010437X23007625_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$16$</span></span></img></span></span> satisfying the Kuga–Satake Hodge conjecture.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x23007625\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007625","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,任何广义库默尔类型的超凯勒六重 $K$ 都有一个自然关联的 $\mathrm {K}3^{[3]}$ 类型的流形 $Y_K$。Y_K$是$K$的商的crepant解析,它是由交映渐开线组作用于其第二同调的crepant解析得到的。当 $K$ 是投影的时候,Y_K$ 与唯一确定的投影 $mathrm {K}3$ 曲面 $S_K$ 上的稳定剪切的模空间是双向的。作为这一构造的应用,我们证明了库加-萨塔克对应关系对于 K3 曲面 $S_K$ 是代数的,从而产生了无限多满足库加-萨塔克霍奇猜想的一般皮卡等级 $16$ 的 $\mathrm {K}3$ 曲面新族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sixfolds of generalized Kummer type and K3 surfaces

We prove that any hyper-Kähler sixfold $K$ of generalized Kummer type has a naturally associated manifold $Y_K$ of $\mathrm {K}3^{[3]}$ type. It is obtained as crepant resolution of the quotient of $K$ by a group of symplectic involutions acting trivially on its second cohomology. When $K$ is projective, the variety $Y_K$ is birational to a moduli space of stable sheaves on a uniquely determined projective $\mathrm {K}3$ surface $S_K$. As an application of this construction we show that the Kuga–Satake correspondence is algebraic for the K3 surfaces $S_K$, producing infinitely many new families of $\mathrm {K}3$ surfaces of general Picard rank $16$ satisfying the Kuga–Satake Hodge conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信