{"title":"基尔霍夫型变阶分数拉普拉斯问题的符号变化解","authors":"Jianwen Zhou, Yueting Yang, Wenbo Wang","doi":"10.1186/s13661-023-01816-0","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the Kirchhoff-type variable-order fractional Laplacian problems involving critical exponents and logarithmic nonlinearity. By using the constraint variational method, we show the existence of one least energy sign-changing solution. Moreover, we show that this energy is strictly larger than twice the ground energy.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sign-changing solutions for Kirchhoff-type variable-order fractional Laplacian problems\",\"authors\":\"Jianwen Zhou, Yueting Yang, Wenbo Wang\",\"doi\":\"10.1186/s13661-023-01816-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the Kirchhoff-type variable-order fractional Laplacian problems involving critical exponents and logarithmic nonlinearity. By using the constraint variational method, we show the existence of one least energy sign-changing solution. Moreover, we show that this energy is strictly larger than twice the ground energy.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-023-01816-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-023-01816-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Sign-changing solutions for Kirchhoff-type variable-order fractional Laplacian problems
In this paper, we are concerned with the Kirchhoff-type variable-order fractional Laplacian problems involving critical exponents and logarithmic nonlinearity. By using the constraint variational method, we show the existence of one least energy sign-changing solution. Moreover, we show that this energy is strictly larger than twice the ground energy.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.