{"title":"无常变的布劳尔群的 p 主扭转的有界性","authors":"Marco D'Addezio","doi":"10.1112/s0010437x23007558","DOIUrl":null,"url":null,"abstract":"<p>We prove that the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$p^\\infty$</span></span></img></span></span>-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$p>0$</span></span></img></span></span> is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$p^\\infty$</span></span></img></span></span>-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-divisible. We explain how the existence of these <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of the p-primary torsion of the Brauer group of an abelian variety\",\"authors\":\"Marco D'Addezio\",\"doi\":\"10.1112/s0010437x23007558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p^\\\\infty$</span></span></img></span></span>-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p>0$</span></span></img></span></span> is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p^\\\\infty$</span></span></img></span></span>-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span></img></span></span>-divisible. We explain how the existence of these <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span></img></span></span>-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span></img></span></span>.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x23007558\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007558","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Boundedness of the p-primary torsion of the Brauer group of an abelian variety
We prove that the $p^\infty$-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic $p>0$ is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant $p^\infty$-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely $p$-divisible. We explain how the existence of these $p$-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic $p$.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.