关于伯曼函数

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Krzysztof Dȩbicki, Enkelejd Hashorva, Zbigniew Michna
{"title":"关于伯曼函数","authors":"Krzysztof Dȩbicki, Enkelejd Hashorva, Zbigniew Michna","doi":"10.1007/s11009-023-10059-6","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(Z(t)= \\exp \\left( \\sqrt{ 2} B_H(t)- \\left|t \\right|^{2H}\\right) , t\\in \\mathbb {R}\\)</span> with <span>\\(B_H(t),t\\in \\mathbb {R}\\)</span> a standard fractional Brownian motion (fBm) with Hurst parameter <span>\\(H \\in (0,1]\\)</span> and define for <i>x</i> non-negative the Berman function </p><span>$$\\begin{aligned} \\mathcal {B}_{Z}(x)= \\mathbb {E} \\left\\{ \\frac{ \\mathbb {I} \\{ \\epsilon _0(RZ) &gt; x\\}}{ \\epsilon _0(RZ)}\\right\\} \\in (0,\\infty ), \\end{aligned}$$</span><p>where the random variable <i>R</i> independent of <i>Z</i> has survival function <span>\\(1/x,x\\geqslant 1\\)</span> and </p><span>$$\\begin{aligned} \\epsilon _0(RZ) = \\int _{\\mathbb {R}} \\mathbb {I}{\\left\\{ RZ(t)&gt; 1\\right\\} }{dt} . \\end{aligned}$$</span><p>In this paper we consider a general random field (rf) <i>Z</i> that is a spectral rf of some stationary max-stable rf <i>X</i> and derive the properties of the corresponding Berman functions. In particular, we show that Berman functions can be approximated by the corresponding discrete ones and derive interesting representations of those functions which are of interest for Monte Carlo simulations presented in this article.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Berman Functions\",\"authors\":\"Krzysztof Dȩbicki, Enkelejd Hashorva, Zbigniew Michna\",\"doi\":\"10.1007/s11009-023-10059-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(Z(t)= \\\\exp \\\\left( \\\\sqrt{ 2} B_H(t)- \\\\left|t \\\\right|^{2H}\\\\right) , t\\\\in \\\\mathbb {R}\\\\)</span> with <span>\\\\(B_H(t),t\\\\in \\\\mathbb {R}\\\\)</span> a standard fractional Brownian motion (fBm) with Hurst parameter <span>\\\\(H \\\\in (0,1]\\\\)</span> and define for <i>x</i> non-negative the Berman function </p><span>$$\\\\begin{aligned} \\\\mathcal {B}_{Z}(x)= \\\\mathbb {E} \\\\left\\\\{ \\\\frac{ \\\\mathbb {I} \\\\{ \\\\epsilon _0(RZ) &gt; x\\\\}}{ \\\\epsilon _0(RZ)}\\\\right\\\\} \\\\in (0,\\\\infty ), \\\\end{aligned}$$</span><p>where the random variable <i>R</i> independent of <i>Z</i> has survival function <span>\\\\(1/x,x\\\\geqslant 1\\\\)</span> and </p><span>$$\\\\begin{aligned} \\\\epsilon _0(RZ) = \\\\int _{\\\\mathbb {R}} \\\\mathbb {I}{\\\\left\\\\{ RZ(t)&gt; 1\\\\right\\\\} }{dt} . \\\\end{aligned}$$</span><p>In this paper we consider a general random field (rf) <i>Z</i> that is a spectral rf of some stationary max-stable rf <i>X</i> and derive the properties of the corresponding Berman functions. In particular, we show that Berman functions can be approximated by the corresponding discrete ones and derive interesting representations of those functions which are of interest for Monte Carlo simulations presented in this article.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-023-10059-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-023-10059-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

让 \(Z(t)= \exp \left( \sqrt{ 2} B_H(t)- \left|t \right|^{2H}\right) , t\in \mathbb {R}\) with \(B_H(t)、t 在 (mathbb {R}\)是一个标准的分数布朗运动(fBm),具有赫斯特参数 (H 在 (0,1]\),并定义 x 为非负的伯曼函数 $$\begin{aligned}\mathcal {B}_{Z}(x)= \mathbb {E}\Left (左) (frac (右) (mathbb {I}\{ \epsilon _0(RZ) > x\}{ \epsilon _0(RZ)}\right\}\in (0,\infty ), \end{aligned}$$其中独立于Z的随机变量R具有生存函数(1/x,x\geqslant 1\) and $$\begin{aligned}\epsilon _0(RZ) = \int _{mathbb {R}}\RZ(t)> 1\right\} }{dt} .}{dt} .\end{aligned}$$ 在本文中,我们考虑了一个一般随机场(rf)Z,它是某个静态最大稳定随机场 X 的谱随机场,并推导了相应伯曼函数的性质。特别是,我们证明伯曼函数可以用相应的离散函数来近似,并推导出这些函数的有趣表示形式,这些表示形式对本文介绍的蒙特卡罗模拟很有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Berman Functions

On Berman Functions

Let \(Z(t)= \exp \left( \sqrt{ 2} B_H(t)- \left|t \right|^{2H}\right) , t\in \mathbb {R}\) with \(B_H(t),t\in \mathbb {R}\) a standard fractional Brownian motion (fBm) with Hurst parameter \(H \in (0,1]\) and define for x non-negative the Berman function

$$\begin{aligned} \mathcal {B}_{Z}(x)= \mathbb {E} \left\{ \frac{ \mathbb {I} \{ \epsilon _0(RZ) > x\}}{ \epsilon _0(RZ)}\right\} \in (0,\infty ), \end{aligned}$$

where the random variable R independent of Z has survival function \(1/x,x\geqslant 1\) and

$$\begin{aligned} \epsilon _0(RZ) = \int _{\mathbb {R}} \mathbb {I}{\left\{ RZ(t)> 1\right\} }{dt} . \end{aligned}$$

In this paper we consider a general random field (rf) Z that is a spectral rf of some stationary max-stable rf X and derive the properties of the corresponding Berman functions. In particular, we show that Berman functions can be approximated by the corresponding discrete ones and derive interesting representations of those functions which are of interest for Monte Carlo simulations presented in this article.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信