关于局部反射原理的保护结果

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Haruka Kogure, Taishi Kurahashi
{"title":"关于局部反射原理的保护结果","authors":"Haruka Kogure, Taishi Kurahashi","doi":"10.1093/logcom/exad076","DOIUrl":null,"url":null,"abstract":"For a class $\\varGamma $ of formulas, $\\varGamma $ local reflection principle $\\textrm{Rfn}_{\\varGamma }(T)$ for a theory $T$ of arithmetic is a scheme formalizing the $\\varGamma $-soundness of $T$. Beklemishev (1997, Theoria, 63, 139–146) proved that for every $\\varGamma \\in \\{\\varSigma _{n}, \\varPi _{n+1} \\mid n \\geq 1\\}$, the full local reflection principle $\\textrm{Rfn}(T)$ is $\\varGamma $-conservative over $T + \\textrm{Rfn}_{\\varGamma }(T)$. We firstly generalize the conservation theorem to nonstandard provability predicates: we prove that the second condition $\\textbf{D2}$ of the derivability conditions is a sufficient condition for the conservation theorem to hold. We secondly investigate the conservation theorem in terms of Rosser provability predicates. We construct Rosser predicates for which the conservation theorem holds and Rosser predicates for which the theorem does not hold.","PeriodicalId":50162,"journal":{"name":"Journal of Logic and Computation","volume":"85 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the conservation results for local reflection principles\",\"authors\":\"Haruka Kogure, Taishi Kurahashi\",\"doi\":\"10.1093/logcom/exad076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a class $\\\\varGamma $ of formulas, $\\\\varGamma $ local reflection principle $\\\\textrm{Rfn}_{\\\\varGamma }(T)$ for a theory $T$ of arithmetic is a scheme formalizing the $\\\\varGamma $-soundness of $T$. Beklemishev (1997, Theoria, 63, 139–146) proved that for every $\\\\varGamma \\\\in \\\\{\\\\varSigma _{n}, \\\\varPi _{n+1} \\\\mid n \\\\geq 1\\\\}$, the full local reflection principle $\\\\textrm{Rfn}(T)$ is $\\\\varGamma $-conservative over $T + \\\\textrm{Rfn}_{\\\\varGamma }(T)$. We firstly generalize the conservation theorem to nonstandard provability predicates: we prove that the second condition $\\\\textbf{D2}$ of the derivability conditions is a sufficient condition for the conservation theorem to hold. We secondly investigate the conservation theorem in terms of Rosser provability predicates. We construct Rosser predicates for which the conservation theorem holds and Rosser predicates for which the theorem does not hold.\",\"PeriodicalId\":50162,\"journal\":{\"name\":\"Journal of Logic and Computation\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logic and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1093/logcom/exad076\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic and Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1093/logcom/exad076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于一类 $\varGamma $ 的公式来说,$\varGamma $ 的局部反射原理 $textrm{Rfn}_{\varGamma }(T)$ 对于算术理论 $T$ 来说是形式化 $\varGamma $ 的方案。Beklemishev (1997, Theoria, 63, 139-146) 证明了对于每一个 $\varGamma in \{varSigma _{n}, \varPi _{n+1}\的全局部反射原理 $\textrm{Rfn}(T)$ 在 $T + \textrm{Rfn}_{\varGamma }(T)$ 上是 $\varGamma $守恒的。我们首先将守恒定理推广到非标准可证明性谓词:我们证明可推导性条件的第二个条件 $\textbf{D2}$ 是守恒定理成立的充分条件。其次,我们从罗瑟可证性谓词的角度来研究守恒定理。我们构建了守恒定理成立的罗瑟谓词和定理不成立的罗瑟谓词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the conservation results for local reflection principles
For a class $\varGamma $ of formulas, $\varGamma $ local reflection principle $\textrm{Rfn}_{\varGamma }(T)$ for a theory $T$ of arithmetic is a scheme formalizing the $\varGamma $-soundness of $T$. Beklemishev (1997, Theoria, 63, 139–146) proved that for every $\varGamma \in \{\varSigma _{n}, \varPi _{n+1} \mid n \geq 1\}$, the full local reflection principle $\textrm{Rfn}(T)$ is $\varGamma $-conservative over $T + \textrm{Rfn}_{\varGamma }(T)$. We firstly generalize the conservation theorem to nonstandard provability predicates: we prove that the second condition $\textbf{D2}$ of the derivability conditions is a sufficient condition for the conservation theorem to hold. We secondly investigate the conservation theorem in terms of Rosser provability predicates. We construct Rosser predicates for which the conservation theorem holds and Rosser predicates for which the theorem does not hold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Logic and Computation
Journal of Logic and Computation 工程技术-计算机:理论方法
CiteScore
1.90
自引率
14.30%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Logic has found application in virtually all aspects of Information Technology, from software engineering and hardware to programming and artificial intelligence. Indeed, logic, artificial intelligence and theoretical computing are influencing each other to the extent that a new interdisciplinary area of Logic and Computation is emerging. The Journal of Logic and Computation aims to promote the growth of logic and computing, including, among others, the following areas of interest: Logical Systems, such as classical and non-classical logic, constructive logic, categorical logic, modal logic, type theory, feasible maths.... Logical issues in logic programming, knowledge-based systems and automated reasoning; logical issues in knowledge representation, such as non-monotonic reasoning and systems of knowledge and belief; logics and semantics of programming; specification and verification of programs and systems; applications of logic in hardware and VLSI, natural language, concurrent computation, planning, and databases. The bulk of the content is technical scientific papers, although letters, reviews, and discussions, as well as relevant conference reviews, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信