{"title":"非均匀弱光图像增强的变量模型","authors":"Fan Jia, Shen Mao, Xue-Cheng Tai, Tieyong Zeng","doi":"10.1137/22m1543161","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 1-30, March 2024. <br/> Abstract. Low-light image enhancement plays an important role in computer vision applications, which is a fundamental low-level task and can affect high-level computer vision tasks. To solve this ill-posed problem, a lot of methods have been proposed to enhance low-light images. However, their performance degrades significantly under nonuniform lighting conditions. Due to the rapid variation of illuminance in different regions in natural images, it is challenging to enhance low-light parts and retain normal-light parts simultaneously in the same image. Commonly, either the low-light parts are underenhanced or the normal-light parts are overenhanced, accompanied by color distortion and artifacts. To overcome this problem, we propose a simple and effective Retinex-based model with reflectance map reweighting for images under nonuniform lighting conditions. An alternating proximal gradient (APG) algorithm is proposed to solve the proposed model, in which the illumination map, the reflectance map, and the weighting map are updated iteratively. To make our model applicable to a wide range of light conditions, we design an initialization scheme for the weighting map. A theoretical analysis of the existence of the solution to our model and the convergence of the APG algorithm are also established. A series of experiments on real-world low-light images are conducted, which demonstrate the effectiveness of our method.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"60 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Variational Model for Nonuniform Low-Light Image Enhancement\",\"authors\":\"Fan Jia, Shen Mao, Xue-Cheng Tai, Tieyong Zeng\",\"doi\":\"10.1137/22m1543161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 1-30, March 2024. <br/> Abstract. Low-light image enhancement plays an important role in computer vision applications, which is a fundamental low-level task and can affect high-level computer vision tasks. To solve this ill-posed problem, a lot of methods have been proposed to enhance low-light images. However, their performance degrades significantly under nonuniform lighting conditions. Due to the rapid variation of illuminance in different regions in natural images, it is challenging to enhance low-light parts and retain normal-light parts simultaneously in the same image. Commonly, either the low-light parts are underenhanced or the normal-light parts are overenhanced, accompanied by color distortion and artifacts. To overcome this problem, we propose a simple and effective Retinex-based model with reflectance map reweighting for images under nonuniform lighting conditions. An alternating proximal gradient (APG) algorithm is proposed to solve the proposed model, in which the illumination map, the reflectance map, and the weighting map are updated iteratively. To make our model applicable to a wide range of light conditions, we design an initialization scheme for the weighting map. A theoretical analysis of the existence of the solution to our model and the convergence of the APG algorithm are also established. A series of experiments on real-world low-light images are conducted, which demonstrate the effectiveness of our method.\",\"PeriodicalId\":49528,\"journal\":{\"name\":\"SIAM Journal on Imaging Sciences\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Imaging Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1543161\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1543161","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Variational Model for Nonuniform Low-Light Image Enhancement
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 1-30, March 2024. Abstract. Low-light image enhancement plays an important role in computer vision applications, which is a fundamental low-level task and can affect high-level computer vision tasks. To solve this ill-posed problem, a lot of methods have been proposed to enhance low-light images. However, their performance degrades significantly under nonuniform lighting conditions. Due to the rapid variation of illuminance in different regions in natural images, it is challenging to enhance low-light parts and retain normal-light parts simultaneously in the same image. Commonly, either the low-light parts are underenhanced or the normal-light parts are overenhanced, accompanied by color distortion and artifacts. To overcome this problem, we propose a simple and effective Retinex-based model with reflectance map reweighting for images under nonuniform lighting conditions. An alternating proximal gradient (APG) algorithm is proposed to solve the proposed model, in which the illumination map, the reflectance map, and the weighting map are updated iteratively. To make our model applicable to a wide range of light conditions, we design an initialization scheme for the weighting map. A theoretical analysis of the existence of the solution to our model and the convergence of the APG algorithm are also established. A series of experiments on real-world low-light images are conducted, which demonstrate the effectiveness of our method.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.