Tamal K. Dey, Michał Lipiński, Marian Mrozek, Ryan Slechta
{"title":"通过类持久性还原计算连接矩阵","authors":"Tamal K. Dey, Michał Lipiński, Marian Mrozek, Ryan Slechta","doi":"10.1137/23m1562469","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 81-97, March 2024. <br/> Abstract. Connection matrices are a generalization of Morse boundary operators from the classical Morse theory for gradient vector fields. Developing an efficient computational framework for connection matrices is particularly important in the context of a rapidly growing data science that requires new mathematical tools for discrete data. Toward this goal, the classical theory for connection matrices has been adapted to combinatorial frameworks that facilitate computation. We develop an efficient persistence-like algorithm to compute a connection matrix from a given combinatorial (multi) vector field on a simplicial complex. This algorithm requires a single pass, improving upon a known algorithm that runs an implicit recursion executing two passes at each level. Overall, the new algorithm is more simple, direct, and efficient than the state-of-the-art. Because of the algorithm’s similarity to the persistence algorithm, one may take advantage of various software optimizations from topological data analysis.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"7 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Connection Matrices via Persistence-Like Reductions\",\"authors\":\"Tamal K. Dey, Michał Lipiński, Marian Mrozek, Ryan Slechta\",\"doi\":\"10.1137/23m1562469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 81-97, March 2024. <br/> Abstract. Connection matrices are a generalization of Morse boundary operators from the classical Morse theory for gradient vector fields. Developing an efficient computational framework for connection matrices is particularly important in the context of a rapidly growing data science that requires new mathematical tools for discrete data. Toward this goal, the classical theory for connection matrices has been adapted to combinatorial frameworks that facilitate computation. We develop an efficient persistence-like algorithm to compute a connection matrix from a given combinatorial (multi) vector field on a simplicial complex. This algorithm requires a single pass, improving upon a known algorithm that runs an implicit recursion executing two passes at each level. Overall, the new algorithm is more simple, direct, and efficient than the state-of-the-art. Because of the algorithm’s similarity to the persistence algorithm, one may take advantage of various software optimizations from topological data analysis.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1562469\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1562469","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Computing Connection Matrices via Persistence-Like Reductions
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 81-97, March 2024. Abstract. Connection matrices are a generalization of Morse boundary operators from the classical Morse theory for gradient vector fields. Developing an efficient computational framework for connection matrices is particularly important in the context of a rapidly growing data science that requires new mathematical tools for discrete data. Toward this goal, the classical theory for connection matrices has been adapted to combinatorial frameworks that facilitate computation. We develop an efficient persistence-like algorithm to compute a connection matrix from a given combinatorial (multi) vector field on a simplicial complex. This algorithm requires a single pass, improving upon a known algorithm that runs an implicit recursion executing two passes at each level. Overall, the new algorithm is more simple, direct, and efficient than the state-of-the-art. Because of the algorithm’s similarity to the persistence algorithm, one may take advantage of various software optimizations from topological data analysis.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.