{"title":"双曲空间中的恒定平均曲率 $n$noids","authors":"Thomas Raujouan","doi":"10.4310/cag.2023.v31.n3.a6","DOIUrl":null,"url":null,"abstract":"Using the DPW method, we construct genus zero Alexandrov-embedded constant mean curvature (greater than one) surfaces with any number of Delaunay ends in the hyperbolic space.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"17 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constant mean curvature $n$-noids in hyperbolic space\",\"authors\":\"Thomas Raujouan\",\"doi\":\"10.4310/cag.2023.v31.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the DPW method, we construct genus zero Alexandrov-embedded constant mean curvature (greater than one) surfaces with any number of Delaunay ends in the hyperbolic space.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n3.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n3.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Constant mean curvature $n$-noids in hyperbolic space
Using the DPW method, we construct genus zero Alexandrov-embedded constant mean curvature (greater than one) surfaces with any number of Delaunay ends in the hyperbolic space.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.