D.T. Bishel , P.M. Nilson , D.A. Chin , J.J. Ruby , E. Smith , S.X. Hu , R. Epstein , I.E. Golovkin , J.R. Rygg , G.W. Collins
{"title":"收敛几何中电离电位抑制模型的制约","authors":"D.T. Bishel , P.M. Nilson , D.A. Chin , J.J. Ruby , E. Smith , S.X. Hu , R. Epstein , I.E. Golovkin , J.R. Rygg , G.W. Collins","doi":"10.1016/j.hedp.2024.101076","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate the value of inner-shell X-ray absorption spectroscopy for dense-plasma atomic physics and explore the coupling between constraint of the thermodynamic state and constraint of ionization-potential depression models. Synthetic K-shell absorption spectra are generated along a radius from a point-like core and analyzed using different ionization-potential depression models. Within this synthetic analysis framework, we identify plasma conditions (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>400</mn></mrow></math></span> eV, <span><math><mrow><mi>ρ</mi><mo>=</mo><mn>40</mn></mrow></math></span> g/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>) accessible by spherical implosions where K-shell absorption spectra discriminate between models if the material temperature is measured to a precision of 20%. The analysis is extensible to a finite-sized core and can be used to guide future studies of ionization-potential depression, informing material and radiative properties of matter in fusion plasmas and stellar interiors.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"50 ","pages":"Article 101076"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574181824000016/pdfft?md5=3638bbcfcaddbd90bd36b1e25905472a&pid=1-s2.0-S1574181824000016-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Toward constraint of ionization-potential depression models in a convergent geometry\",\"authors\":\"D.T. Bishel , P.M. Nilson , D.A. Chin , J.J. Ruby , E. Smith , S.X. Hu , R. Epstein , I.E. Golovkin , J.R. Rygg , G.W. Collins\",\"doi\":\"10.1016/j.hedp.2024.101076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We demonstrate the value of inner-shell X-ray absorption spectroscopy for dense-plasma atomic physics and explore the coupling between constraint of the thermodynamic state and constraint of ionization-potential depression models. Synthetic K-shell absorption spectra are generated along a radius from a point-like core and analyzed using different ionization-potential depression models. Within this synthetic analysis framework, we identify plasma conditions (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>400</mn></mrow></math></span> eV, <span><math><mrow><mi>ρ</mi><mo>=</mo><mn>40</mn></mrow></math></span> g/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>) accessible by spherical implosions where K-shell absorption spectra discriminate between models if the material temperature is measured to a precision of 20%. The analysis is extensible to a finite-sized core and can be used to guide future studies of ionization-potential depression, informing material and radiative properties of matter in fusion plasmas and stellar interiors.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"50 \",\"pages\":\"Article 101076\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1574181824000016/pdfft?md5=3638bbcfcaddbd90bd36b1e25905472a&pid=1-s2.0-S1574181824000016-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574181824000016\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181824000016","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
我们展示了内壳 X 射线吸收光谱在致密等离子体原子物理中的价值,并探索了热力学状态约束与电离势抑模型约束之间的耦合。我们沿着一个点状内核的半径生成合成的 K 壳吸收光谱,并使用不同的电离势抑模型对其进行分析。在这一合成分析框架内,我们确定了球形内爆可达到的等离子体条件(Te=400 eV,ρ=40 g/cm3),在这些条件下,如果材料温度的测量精度达到 20%,K-壳吸收光谱就能区分不同的模型。该分析可扩展到有限大小的内核,并可用于指导未来的电离势凹陷研究,为聚变等离子体和恒星内部物质的材料和辐射特性提供信息。
Toward constraint of ionization-potential depression models in a convergent geometry
We demonstrate the value of inner-shell X-ray absorption spectroscopy for dense-plasma atomic physics and explore the coupling between constraint of the thermodynamic state and constraint of ionization-potential depression models. Synthetic K-shell absorption spectra are generated along a radius from a point-like core and analyzed using different ionization-potential depression models. Within this synthetic analysis framework, we identify plasma conditions ( eV, g/cm) accessible by spherical implosions where K-shell absorption spectra discriminate between models if the material temperature is measured to a precision of 20%. The analysis is extensible to a finite-sized core and can be used to guide future studies of ionization-potential depression, informing material and radiative properties of matter in fusion plasmas and stellar interiors.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.