通过傅立叶变换求解延迟微分方程

Kenta Ohira, Toru Ohira
{"title":"通过傅立叶变换求解延迟微分方程","authors":"Kenta Ohira, Toru Ohira","doi":"arxiv-2401.02027","DOIUrl":null,"url":null,"abstract":"In this study, we introduce and explore a delay differential equation that\nlends itself to explicit solutions in the Fourier-transformed space. Through\nthe careful alignment of the initial function, we can construct a highly\naccurate solution to the equation. These findings open new avenues for\nunderstanding delay systems, demonstrating the efficacy of Fourier transform\ntechniques in capturing transient oscillatory dynamics.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving a Delay Differential Equation through Fourier Transform\",\"authors\":\"Kenta Ohira, Toru Ohira\",\"doi\":\"arxiv-2401.02027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce and explore a delay differential equation that\\nlends itself to explicit solutions in the Fourier-transformed space. Through\\nthe careful alignment of the initial function, we can construct a highly\\naccurate solution to the equation. These findings open new avenues for\\nunderstanding delay systems, demonstrating the efficacy of Fourier transform\\ntechniques in capturing transient oscillatory dynamics.\",\"PeriodicalId\":501305,\"journal\":{\"name\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.02027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.02027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们介绍并探讨了一种延迟微分方程,该方程适合在傅立叶变换空间中求解。通过对初始函数的精心调整,我们可以构建出该方程的高精度解。这些发现为理解延迟系统开辟了新途径,证明了傅立叶变换技术在捕捉瞬态振荡动力学方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving a Delay Differential Equation through Fourier Transform
In this study, we introduce and explore a delay differential equation that lends itself to explicit solutions in the Fourier-transformed space. Through the careful alignment of the initial function, we can construct a highly accurate solution to the equation. These findings open new avenues for understanding delay systems, demonstrating the efficacy of Fourier transform techniques in capturing transient oscillatory dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信