{"title":"通过非凸正则化估计稀疏协方差矩阵","authors":"Xin Wang , Lingchen Kong , Liqun Wang","doi":"10.1016/j.jmva.2024.105294","DOIUrl":null,"url":null,"abstract":"<div><p>Estimation of high-dimensional sparse covariance matrix is one of the fundamental and important problems in multivariate analysis and has a wide range of applications in many fields. This paper presents a novel method for sparse covariance matrix estimation via solving a non-convex regularization optimization problem. We establish the asymptotic properties of the proposed estimator and develop a multi-stage convex relaxation method to find an effective estimator. The multi-stage convex relaxation method guarantees any accumulation point of the sequence generated is a first-order stationary point of the non-convex optimization. Moreover, the error bounds of the first two stage estimators of the multi-stage convex relaxation method are derived under some regularity conditions. The numerical results show that our estimator outperforms the state-of-the-art estimators and has a high degree of sparsity on the premise of its effectiveness.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of sparse covariance matrix via non-convex regularization\",\"authors\":\"Xin Wang , Lingchen Kong , Liqun Wang\",\"doi\":\"10.1016/j.jmva.2024.105294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Estimation of high-dimensional sparse covariance matrix is one of the fundamental and important problems in multivariate analysis and has a wide range of applications in many fields. This paper presents a novel method for sparse covariance matrix estimation via solving a non-convex regularization optimization problem. We establish the asymptotic properties of the proposed estimator and develop a multi-stage convex relaxation method to find an effective estimator. The multi-stage convex relaxation method guarantees any accumulation point of the sequence generated is a first-order stationary point of the non-convex optimization. Moreover, the error bounds of the first two stage estimators of the multi-stage convex relaxation method are derived under some regularity conditions. The numerical results show that our estimator outperforms the state-of-the-art estimators and has a high degree of sparsity on the premise of its effectiveness.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000010\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimation of sparse covariance matrix via non-convex regularization
Estimation of high-dimensional sparse covariance matrix is one of the fundamental and important problems in multivariate analysis and has a wide range of applications in many fields. This paper presents a novel method for sparse covariance matrix estimation via solving a non-convex regularization optimization problem. We establish the asymptotic properties of the proposed estimator and develop a multi-stage convex relaxation method to find an effective estimator. The multi-stage convex relaxation method guarantees any accumulation point of the sequence generated is a first-order stationary point of the non-convex optimization. Moreover, the error bounds of the first two stage estimators of the multi-stage convex relaxation method are derived under some regularity conditions. The numerical results show that our estimator outperforms the state-of-the-art estimators and has a high degree of sparsity on the premise of its effectiveness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.