论 (p,q) 拉普拉斯算子的一类无限半正交问题

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
R. Dhanya, Sarbani Pramanik, R. Harish
{"title":"论 (p,q) 拉普拉斯算子的一类无限半正交问题","authors":"R. Dhanya, Sarbani Pramanik, R. Harish","doi":"10.3233/asy-231880","DOIUrl":null,"url":null,"abstract":"We analyze a non-linear elliptic boundary value problem that involves (p,q) Laplace operator, for the existence of its positive solution in an arbitrary smooth bounded domain. The non-linearity here is driven by a singular, monotonically increasing continuous function in (0,∞) which is eventually positive. The novelty in proving the existence of a positive solution lies in the construction of a suitable subsolution. Our contribution marks an advancement in the theory of existence of positive solutions for infinite semipositone problems in arbitrary bounded domains, whereas the prevailing theory is limited to addressing similar problems only in symmetric domains. Additionally, using the ideas pertaining to the construction of subsolution, we establish the exact behavior of the solutions of “q-sublinear” problem involving (p,q) Laplace operator when the parameter λ is very large. The parameter estimate that we derive is non-trivial due to the non-homogeneous nature of the operator and is of independent interest.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"217 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of infinite semipositone problems for (p,q) Laplace operator\",\"authors\":\"R. Dhanya, Sarbani Pramanik, R. Harish\",\"doi\":\"10.3233/asy-231880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze a non-linear elliptic boundary value problem that involves (p,q) Laplace operator, for the existence of its positive solution in an arbitrary smooth bounded domain. The non-linearity here is driven by a singular, monotonically increasing continuous function in (0,∞) which is eventually positive. The novelty in proving the existence of a positive solution lies in the construction of a suitable subsolution. Our contribution marks an advancement in the theory of existence of positive solutions for infinite semipositone problems in arbitrary bounded domains, whereas the prevailing theory is limited to addressing similar problems only in symmetric domains. Additionally, using the ideas pertaining to the construction of subsolution, we establish the exact behavior of the solutions of “q-sublinear” problem involving (p,q) Laplace operator when the parameter λ is very large. The parameter estimate that we derive is non-trivial due to the non-homogeneous nature of the operator and is of independent interest.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"217 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231880\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231880","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了一个涉及(p,q)拉普拉斯算子的非线性椭圆边界值问题,以寻求其在任意光滑有界域中正解的存在性。这里的非线性由(0,∞)中一个奇异的单调递增连续函数驱动,该函数最终为正。证明正解存在的新颖之处在于构建合适的子解。我们的贡献标志着任意有界域中无限半正交问题正解存在性理论的进步,而目前的理论仅限于解决对称域中的类似问题。此外,利用子解构造的相关思想,我们建立了当参数 λ 非常大时,涉及 (p,q) 拉普拉斯算子的 "q-子线性 "问题解的精确行为。由于算子的非均质性质,我们得出的参数估计是非难的,并且具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a class of infinite semipositone problems for (p,q) Laplace operator
We analyze a non-linear elliptic boundary value problem that involves (p,q) Laplace operator, for the existence of its positive solution in an arbitrary smooth bounded domain. The non-linearity here is driven by a singular, monotonically increasing continuous function in (0,∞) which is eventually positive. The novelty in proving the existence of a positive solution lies in the construction of a suitable subsolution. Our contribution marks an advancement in the theory of existence of positive solutions for infinite semipositone problems in arbitrary bounded domains, whereas the prevailing theory is limited to addressing similar problems only in symmetric domains. Additionally, using the ideas pertaining to the construction of subsolution, we establish the exact behavior of the solutions of “q-sublinear” problem involving (p,q) Laplace operator when the parameter λ is very large. The parameter estimate that we derive is non-trivial due to the non-homogeneous nature of the operator and is of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信