土工格室加固土壤上偏心荷载条形基脚的性能

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Sarper Demirdöğen, Ayhan Gürbüz, Kaan Yünkül
{"title":"土工格室加固土壤上偏心荷载条形基脚的性能","authors":"Sarper Demirdöğen,&nbsp;Ayhan Gürbüz,&nbsp;Kaan Yünkül","doi":"10.1016/j.geotexmem.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this pioneering study, the performance of an eccentrically loaded strip footing on geocell-reinforced sand was assessed with instrumented laboratory model tests in terms of pressure-settlement response, surface displacement profiles, failure mechanisms and ultimate bearing capacity considering load eccentricity, geocell<span> height, geocell material stiffness and the relative density of the soil. The results indicated that strip footings on the geocell-reinforced sand outperformed those on unreinforced soils, with up to a 6.5-fold increase in the bearing capacity and significant improvements in the initial slope of the pressure-settlement curve. Furthermore, the strip footing under centric loading on the geocell-reinforced loose and dense sand exhibited either only punching or local shear failure while load eccentricity on the strip footing could lead to the shear failures including punching, local and general. In this research, both a design chart for predicting failure modes of geocell-reinforced strip footings and a new interpretation method to evaluate ultimate bearing capacity were proposed. Increasing the relative density of the soil and material stiffness enhanced the ultimate bearing capacity of geocell-reinforced strip footings under both centric and eccentric loading conditions, with stiffer materials resulting up to 25% increase. However, increased geocell height had no significant impact on bearing capacity.</span></p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 4","pages":"Pages 421-434"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of eccentrically loaded strip footings on geocell-reinforced soil\",\"authors\":\"Sarper Demirdöğen,&nbsp;Ayhan Gürbüz,&nbsp;Kaan Yünkül\",\"doi\":\"10.1016/j.geotexmem.2023.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this pioneering study, the performance of an eccentrically loaded strip footing on geocell-reinforced sand was assessed with instrumented laboratory model tests in terms of pressure-settlement response, surface displacement profiles, failure mechanisms and ultimate bearing capacity considering load eccentricity, geocell<span> height, geocell material stiffness and the relative density of the soil. The results indicated that strip footings on the geocell-reinforced sand outperformed those on unreinforced soils, with up to a 6.5-fold increase in the bearing capacity and significant improvements in the initial slope of the pressure-settlement curve. Furthermore, the strip footing under centric loading on the geocell-reinforced loose and dense sand exhibited either only punching or local shear failure while load eccentricity on the strip footing could lead to the shear failures including punching, local and general. In this research, both a design chart for predicting failure modes of geocell-reinforced strip footings and a new interpretation method to evaluate ultimate bearing capacity were proposed. Increasing the relative density of the soil and material stiffness enhanced the ultimate bearing capacity of geocell-reinforced strip footings under both centric and eccentric loading conditions, with stiffer materials resulting up to 25% increase. However, increased geocell height had no significant impact on bearing capacity.</span></p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"52 4\",\"pages\":\"Pages 421-434\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114423001127\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114423001127","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项开创性的研究中,考虑到荷载偏心率、土工格室高度、土工格室材料刚度和土壤相对密度等因素,通过带仪器的实验室模型试验,从压力沉降响应、表面位移曲线、破坏机制和极限承载力等方面评估了土工格室加固砂土上承受偏心荷载的条形基脚的性能。结果表明,土工格室加固砂土上的条形基脚性能优于未加固土壤上的条形基脚,承载能力提高了 6.5 倍,压力沉降曲线的初始斜率也有显著改善。此外,在土工格室加固的松散密实砂土上,承受中心荷载的条形基脚仅表现出冲孔或局部剪切破坏,而条形基脚上的荷载偏心可导致包括冲孔、局部和整体在内的剪切破坏。本研究提出了预测土工格室加固条形基脚破坏模式的设计图表和评估极限承载力的新解释方法。提高土壤相对密度和材料刚度可增强土工格室加固条形基脚在中心和偏心荷载条件下的极限承载力,其中材料刚度可提高 25%。然而,土工格室高度的增加对承载能力没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of eccentrically loaded strip footings on geocell-reinforced soil

In this pioneering study, the performance of an eccentrically loaded strip footing on geocell-reinforced sand was assessed with instrumented laboratory model tests in terms of pressure-settlement response, surface displacement profiles, failure mechanisms and ultimate bearing capacity considering load eccentricity, geocell height, geocell material stiffness and the relative density of the soil. The results indicated that strip footings on the geocell-reinforced sand outperformed those on unreinforced soils, with up to a 6.5-fold increase in the bearing capacity and significant improvements in the initial slope of the pressure-settlement curve. Furthermore, the strip footing under centric loading on the geocell-reinforced loose and dense sand exhibited either only punching or local shear failure while load eccentricity on the strip footing could lead to the shear failures including punching, local and general. In this research, both a design chart for predicting failure modes of geocell-reinforced strip footings and a new interpretation method to evaluate ultimate bearing capacity were proposed. Increasing the relative density of the soil and material stiffness enhanced the ultimate bearing capacity of geocell-reinforced strip footings under both centric and eccentric loading conditions, with stiffer materials resulting up to 25% increase. However, increased geocell height had no significant impact on bearing capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信