生物特征网络:剖析消费者与资源的相互作用

IF 1.8 4区 环境科学与生态学 Q2 BIODIVERSITY CONSERVATION
P.E.N. Olivier , M. Lindegren , E. Bonsdorff , M.C. Nordström
{"title":"生物特征网络:剖析消费者与资源的相互作用","authors":"P.E.N. Olivier ,&nbsp;M. Lindegren ,&nbsp;E. Bonsdorff ,&nbsp;M.C. Nordström","doi":"10.1016/j.fooweb.2023.e00333","DOIUrl":null,"url":null,"abstract":"<div><p>Trophic interactions can be both ephemeral and difficult to document, rendering their sampling often incomplete and context-dependent, which makes construction, analysis, and comparison of food webs challenging. Biological traits are central in determining co-occurrence of species (through dispersal, environmental, and interaction filters), as well as the potential for species interactions (through trait matching). Thereby, supplementing empirical, taxonomy-based information on trophic links with trait-based inference may help us build more realistic and adaptable food webs. Here, we go beyond taxonomy to document (i) how traits (e.g., body size, metabolic category and feeding strategy) contribute to local food web structure, and (ii) how associations of consumer-resource traits are structured. We built a trophic-link based trait-interaction network—or trait web—by combining multivariate approaches and network analysis. We found that consumer-resource associations organize into trait profiles that reflect the general vertical structure of the food web, as well as identify groups of limited sets of highly interacting traits. Finally, we discuss the implications of the findings for generating comprehensive and adaptive food webs.</p></div>","PeriodicalId":38084,"journal":{"name":"Food Webs","volume":"38 ","pages":"Article e00333"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352249623000629/pdfft?md5=3b4fb8f0955561fc7d8127c7bebb9dcb&pid=1-s2.0-S2352249623000629-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A network of biological traits: Profiling consumer-resource interactions\",\"authors\":\"P.E.N. Olivier ,&nbsp;M. Lindegren ,&nbsp;E. Bonsdorff ,&nbsp;M.C. Nordström\",\"doi\":\"10.1016/j.fooweb.2023.e00333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Trophic interactions can be both ephemeral and difficult to document, rendering their sampling often incomplete and context-dependent, which makes construction, analysis, and comparison of food webs challenging. Biological traits are central in determining co-occurrence of species (through dispersal, environmental, and interaction filters), as well as the potential for species interactions (through trait matching). Thereby, supplementing empirical, taxonomy-based information on trophic links with trait-based inference may help us build more realistic and adaptable food webs. Here, we go beyond taxonomy to document (i) how traits (e.g., body size, metabolic category and feeding strategy) contribute to local food web structure, and (ii) how associations of consumer-resource traits are structured. We built a trophic-link based trait-interaction network—or trait web—by combining multivariate approaches and network analysis. We found that consumer-resource associations organize into trait profiles that reflect the general vertical structure of the food web, as well as identify groups of limited sets of highly interacting traits. Finally, we discuss the implications of the findings for generating comprehensive and adaptive food webs.</p></div>\",\"PeriodicalId\":38084,\"journal\":{\"name\":\"Food Webs\",\"volume\":\"38 \",\"pages\":\"Article e00333\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352249623000629/pdfft?md5=3b4fb8f0955561fc7d8127c7bebb9dcb&pid=1-s2.0-S2352249623000629-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Webs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352249623000629\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Webs","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352249623000629","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

营养互作可能既短暂又难以记录,因此其取样往往是不完整的,而且取决于具体情况,这使得食物网的构建、分析和比较具有挑战性。生物特征是决定物种共存(通过扩散、环境和相互作用过滤)以及物种相互作用潜力(通过特征匹配)的核心因素。因此,通过基于性状的推断来补充基于经验、分类学的营养联系信息,可以帮助我们构建更现实、适应性更强的食物网。在这里,我们超越了分类学的范畴,记录了(i)性状(如体型、代谢类别和摄食策略)对当地食物网结构的贡献,以及(ii)消费者-资源性状的关联结构。我们结合多元方法和网络分析,建立了一个基于营养链的性状互动网络(或称性状网)。我们发现,消费者与资源之间的关联可以组织成反映食物网总体垂直结构的性状图谱,也可以识别出高度相互作用的有限性状组。最后,我们讨论了这些发现对生成全面、适应性强的食物网的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A network of biological traits: Profiling consumer-resource interactions

A network of biological traits: Profiling consumer-resource interactions

Trophic interactions can be both ephemeral and difficult to document, rendering their sampling often incomplete and context-dependent, which makes construction, analysis, and comparison of food webs challenging. Biological traits are central in determining co-occurrence of species (through dispersal, environmental, and interaction filters), as well as the potential for species interactions (through trait matching). Thereby, supplementing empirical, taxonomy-based information on trophic links with trait-based inference may help us build more realistic and adaptable food webs. Here, we go beyond taxonomy to document (i) how traits (e.g., body size, metabolic category and feeding strategy) contribute to local food web structure, and (ii) how associations of consumer-resource traits are structured. We built a trophic-link based trait-interaction network—or trait web—by combining multivariate approaches and network analysis. We found that consumer-resource associations organize into trait profiles that reflect the general vertical structure of the food web, as well as identify groups of limited sets of highly interacting traits. Finally, we discuss the implications of the findings for generating comprehensive and adaptive food webs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Webs
Food Webs Environmental Science-Ecology
CiteScore
2.80
自引率
5.90%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信