Ida Karlsson Seidenfaden , Xin He , Anne Lausten Hansen , Bo V. Iversen , Anker Lajer Højberg
{"title":"能否利用当地的排水流量测量来改进集水规模建模?","authors":"Ida Karlsson Seidenfaden , Xin He , Anne Lausten Hansen , Bo V. Iversen , Anker Lajer Højberg","doi":"10.1016/j.hydroa.2023.100170","DOIUrl":null,"url":null,"abstract":"<div><p>Tile drains constitute a shortcut from agricultural fields to surface water systems, significantly altering the transport pathways and fate of nitrate during transport. A correct representation of tile drainage flow is thus crucial for estimating nitrate load at the catchment scale and to identify optimal locations for N-mitigation measures. Drainage is a local process, controlled by local properties and drain configurations, which are rarely known for individual fields, making drainage flow and transport a challenging task in catchment scale models. This study tests the potential for improving drainage flow dynamics at catchment scale, by utilising local drainage flow measurements in a spatial calibration scheme. A distributed hydrological model, MIKE SHE, for the agricultural-dominated Norsminde catchment (145 km<sup>2</sup>) in Denmark, was calibrated using spatially distributed surrogate parameters (pilot points) to represent heterogeneity in the soil (top 3 m) and the deeper geology below 3 m. The model was calibrated using hydraulic heads, stream discharge, and measured drainage flow from eight drain catchments. Drain measurements were very important in guiding the calibration of top 3 m and subsurface pilot points located in the drainage fields, showing that drain flow hold information on both local (shallow) and regional (deeper) flow patterns. Contrarily, pilot points located outside the drained fields were mainly sensitive to the hydraulic head measurements and the summer water balance of the stream discharge on a catchment scale. Consequently, incorporation of the drain data improved local performance, but did not improve the parameterization and drain description of the entire catchment. Exploitation of the drain flow information is thus difficult beyond the drain catchments, and other approaches are needed to extrapolate and exploit the local data.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258991552300024X/pdfft?md5=5bf47525c4cb97a6f33d60e6f7e95813&pid=1-s2.0-S258991552300024X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Can local drain flow measurements be utilized to improve catchment scale modelling?\",\"authors\":\"Ida Karlsson Seidenfaden , Xin He , Anne Lausten Hansen , Bo V. Iversen , Anker Lajer Højberg\",\"doi\":\"10.1016/j.hydroa.2023.100170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tile drains constitute a shortcut from agricultural fields to surface water systems, significantly altering the transport pathways and fate of nitrate during transport. A correct representation of tile drainage flow is thus crucial for estimating nitrate load at the catchment scale and to identify optimal locations for N-mitigation measures. Drainage is a local process, controlled by local properties and drain configurations, which are rarely known for individual fields, making drainage flow and transport a challenging task in catchment scale models. This study tests the potential for improving drainage flow dynamics at catchment scale, by utilising local drainage flow measurements in a spatial calibration scheme. A distributed hydrological model, MIKE SHE, for the agricultural-dominated Norsminde catchment (145 km<sup>2</sup>) in Denmark, was calibrated using spatially distributed surrogate parameters (pilot points) to represent heterogeneity in the soil (top 3 m) and the deeper geology below 3 m. The model was calibrated using hydraulic heads, stream discharge, and measured drainage flow from eight drain catchments. Drain measurements were very important in guiding the calibration of top 3 m and subsurface pilot points located in the drainage fields, showing that drain flow hold information on both local (shallow) and regional (deeper) flow patterns. Contrarily, pilot points located outside the drained fields were mainly sensitive to the hydraulic head measurements and the summer water balance of the stream discharge on a catchment scale. Consequently, incorporation of the drain data improved local performance, but did not improve the parameterization and drain description of the entire catchment. Exploitation of the drain flow information is thus difficult beyond the drain catchments, and other approaches are needed to extrapolate and exploit the local data.</p></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S258991552300024X/pdfft?md5=5bf47525c4cb97a6f33d60e6f7e95813&pid=1-s2.0-S258991552300024X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258991552300024X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258991552300024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
瓦片排水是农田通往地表水系统的捷径,极大地改变了硝酸盐的迁移路径和迁移过程中的归宿。因此,正确表示瓦片排水流量对于估算集水区范围内的硝酸盐负荷以及确定硝酸盐减缓措施的最佳位置至关重要。排水是一个局部过程,受局部属性和排水沟配置的控制,而单个田块的排水属性和排水沟配置很少为人所知,这使得排水流动和迁移成为集水尺度模型中的一项具有挑战性的任务。本研究通过在空间校准方案中利用当地的排水流量测量数据,测试了改善集水规模排水流量动态的潜力。丹麦以农业为主的 Norsminde 流域(145 平方公里)的分布式水文模型 MIKE SHE 采用空间分布式代用参数(试验点)进行校核,以表示土壤(顶部 3 米)和 3 米以下深层地质的异质性。排水测量对于校准位于排水区内的顶部 3 米和地下先导点非常重要,这表明排水流包含了当地(浅层)和区域(深层)水流模式的信息。与此相反,位于渠田以外的试验点主要对水头测量和集水尺度上的夏季溪流水量平衡敏感。因此,纳入渠流数据可改善局部性能,但并不能改善整个集水区的参数化和渠流描述。因此,在渠集水区之外很难利用渠流信息,需要采用其他方法来推断和利用局部数据。
Can local drain flow measurements be utilized to improve catchment scale modelling?
Tile drains constitute a shortcut from agricultural fields to surface water systems, significantly altering the transport pathways and fate of nitrate during transport. A correct representation of tile drainage flow is thus crucial for estimating nitrate load at the catchment scale and to identify optimal locations for N-mitigation measures. Drainage is a local process, controlled by local properties and drain configurations, which are rarely known for individual fields, making drainage flow and transport a challenging task in catchment scale models. This study tests the potential for improving drainage flow dynamics at catchment scale, by utilising local drainage flow measurements in a spatial calibration scheme. A distributed hydrological model, MIKE SHE, for the agricultural-dominated Norsminde catchment (145 km2) in Denmark, was calibrated using spatially distributed surrogate parameters (pilot points) to represent heterogeneity in the soil (top 3 m) and the deeper geology below 3 m. The model was calibrated using hydraulic heads, stream discharge, and measured drainage flow from eight drain catchments. Drain measurements were very important in guiding the calibration of top 3 m and subsurface pilot points located in the drainage fields, showing that drain flow hold information on both local (shallow) and regional (deeper) flow patterns. Contrarily, pilot points located outside the drained fields were mainly sensitive to the hydraulic head measurements and the summer water balance of the stream discharge on a catchment scale. Consequently, incorporation of the drain data improved local performance, but did not improve the parameterization and drain description of the entire catchment. Exploitation of the drain flow information is thus difficult beyond the drain catchments, and other approaches are needed to extrapolate and exploit the local data.