利用过渡优先权实现标记 Petri 网的有界性和有效性

Q1 Engineering
Ye-Jia Liu, Xun-Bo Li
{"title":"利用过渡优先权实现标记 Petri 网的有界性和有效性","authors":"Ye-Jia Liu,&nbsp;Xun-Bo Li","doi":"10.1016/j.jnlest.2023.100227","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the supervisory control problem of discrete event systems modeled by labeled Petri nets. The system is originally unbounded. First, the solvability of the problem is confirmed. A necessary condition is given and proven for the existence of a feasible priority-based controller based on the notions of liveness and transition invariants. Next, a cyclic behavior graph is constructed, which shows the reachable markings that guarantee the maximum liveness of the system within a given bound vector. Finally, an on-line control strategy is proposed to enforce boundedness and liveness to the given system by appending priority relations to transitions. The dynamic priority relation changes flexibly according to the current state of the system and enforces the system evolving in a bounded and live manner. In addition, numerical examples are studied to verify the validity of the proposed approach that remains the structure of the plant net and is efficient for on-line control.</p></div>","PeriodicalId":53467,"journal":{"name":"Journal of Electronic Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674862X23000459/pdfft?md5=452adc408125d039c96d1e7316f12b91&pid=1-s2.0-S1674862X23000459-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Boundedness and liveness enforcement for labeled Petri nets using transition priority\",\"authors\":\"Ye-Jia Liu,&nbsp;Xun-Bo Li\",\"doi\":\"10.1016/j.jnlest.2023.100227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with the supervisory control problem of discrete event systems modeled by labeled Petri nets. The system is originally unbounded. First, the solvability of the problem is confirmed. A necessary condition is given and proven for the existence of a feasible priority-based controller based on the notions of liveness and transition invariants. Next, a cyclic behavior graph is constructed, which shows the reachable markings that guarantee the maximum liveness of the system within a given bound vector. Finally, an on-line control strategy is proposed to enforce boundedness and liveness to the given system by appending priority relations to transitions. The dynamic priority relation changes flexibly according to the current state of the system and enforces the system evolving in a bounded and live manner. In addition, numerical examples are studied to verify the validity of the proposed approach that remains the structure of the plant net and is efficient for on-line control.</p></div>\",\"PeriodicalId\":53467,\"journal\":{\"name\":\"Journal of Electronic Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674862X23000459/pdfft?md5=452adc408125d039c96d1e7316f12b91&pid=1-s2.0-S1674862X23000459-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674862X23000459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674862X23000459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文论述了以标记 Petri 网为模型的离散事件系统的监督控制问题。系统最初是无边界的。首先,确认了问题的可解性。根据有效性和转换不变性的概念,给出并证明了一个可行的基于优先级的控制器存在的必要条件。接着,构建了一个循环行为图,该图显示了在给定约束向量内保证系统最大有效性的可达标记。最后,我们提出了一种在线控制策略,通过给过渡附加优先级关系来强制执行给定系统的约束性和有效性。动态优先级关系会根据系统的当前状态灵活变化,并确保系统以有界和有效的方式演进。此外,还研究了数值实例,以验证所提方法的有效性,该方法保持了植物网的结构,并能有效地进行在线控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness and liveness enforcement for labeled Petri nets using transition priority

This paper deals with the supervisory control problem of discrete event systems modeled by labeled Petri nets. The system is originally unbounded. First, the solvability of the problem is confirmed. A necessary condition is given and proven for the existence of a feasible priority-based controller based on the notions of liveness and transition invariants. Next, a cyclic behavior graph is constructed, which shows the reachable markings that guarantee the maximum liveness of the system within a given bound vector. Finally, an on-line control strategy is proposed to enforce boundedness and liveness to the given system by appending priority relations to transitions. The dynamic priority relation changes flexibly according to the current state of the system and enforces the system evolving in a bounded and live manner. In addition, numerical examples are studied to verify the validity of the proposed approach that remains the structure of the plant net and is efficient for on-line control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Science and Technology
Journal of Electronic Science and Technology Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
0.00%
发文量
1362
审稿时长
99 days
期刊介绍: JEST (International) covers the state-of-the-art achievements in electronic science and technology, including the most highlight areas: ¨ Communication Technology ¨ Computer Science and Information Technology ¨ Information and Network Security ¨ Bioelectronics and Biomedicine ¨ Neural Networks and Intelligent Systems ¨ Electronic Systems and Array Processing ¨ Optoelectronic and Photonic Technologies ¨ Electronic Materials and Devices ¨ Sensing and Measurement ¨ Signal Processing and Image Processing JEST (International) is dedicated to building an open, high-level academic journal supported by researchers, professionals, and academicians. The Journal has been fully indexed by Ei INSPEC and has published, with great honor, the contributions from more than 20 countries and regions in the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信