真实世界生物资源中的大规模药物遗传学:英国生物数据库中的 CYP2C19 和氯吡格雷结果。

IF 1.7 3区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Pharmacogenetics and genomics Pub Date : 2024-04-01 Epub Date: 2023-12-28 DOI:10.1097/FPC.0000000000000519
Khaled F Bedair, Blair Smith, Colin N A Palmer, Alex S F Doney, Ewan R Pearson
{"title":"真实世界生物资源中的大规模药物遗传学:英国生物数据库中的 CYP2C19 和氯吡格雷结果。","authors":"Khaled F Bedair, Blair Smith, Colin N A Palmer, Alex S F Doney, Ewan R Pearson","doi":"10.1097/FPC.0000000000000519","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The impact of CYP2C19 genotype on clopidogrel outcomes is one of the most well established pharmacogenetic interactions, supported by robust evidence and recommended by the Food and Drug Administration and clinical pharmacogenetics implementation consortium. However, there is a scarcity of large-scale real-world data on the extent of this pharmacogenetic effect, and clinical testing for the CYP2C19 genotype remains infrequent. This study utilizes the UK Biobank dataset, including 10 365 patients treated with clopidogrel, to offer the largest observational analysis of these pharmacogenetic effects to date.</p><p><strong>Methods: </strong>Incorporating time-varying drug exposure and repeated clinical outcome, we adopted semiparametric frailty models to detect and quantify exposure-based effects of CYP2C19 (*2,*17) variants and nongenetic factors on the incidence risks of composite outcomes of death or recurrent hospitalizations due to major adverse cardiovascular events (MACE) or hemorrhage in the entire cohort of clopidogrel-treated patients.</p><p><strong>Results: </strong>Out of the 10 365 clopidogrel-treated patients, 40% (4115) experienced 10 625 MACE events during an average follow-up of 9.23 years. Individuals who received clopidogrel (coverage >25%) with a CYP2C19*2 loss-of-function allele had a 9.4% higher incidence of MACE [incidence rate ratios (IRR), 1.094; 1.044-1.146], but a 15% lower incidence of hemorrhage (IRR, 0.849; 0.712-0.996). These effects were stronger with high clopidogrel exposure. Conversely, the gain-of-function CYP2C19*17 variant was associated with a 5.3% lower incidence of MACE (IRR, 0.947; 0.903-0.983). Notably, there was no evidence of *2 or *17 effects when clopidogrel exposure was low, confirming the presence of a drug-gene interaction.</p><p><strong>Conclusion: </strong>The impact of CYP2C19 on clinical outcomes in clopidogrel-treated patients is substantial, highlighting the importance of incorporating genotype-based prescribing into clinical practice, regardless of the reason for clopidogrel use or the duration of treatment. Moreover, the methodology introduced in this study can be applied to further real-world investigations of known drug-gene and drug-drug interactions and the discovery of novel interactions.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"73-82"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacogenetics at scale in real-world bioresources: CYP2C19 and clopidogrel outcomes in UK Biobank.\",\"authors\":\"Khaled F Bedair, Blair Smith, Colin N A Palmer, Alex S F Doney, Ewan R Pearson\",\"doi\":\"10.1097/FPC.0000000000000519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The impact of CYP2C19 genotype on clopidogrel outcomes is one of the most well established pharmacogenetic interactions, supported by robust evidence and recommended by the Food and Drug Administration and clinical pharmacogenetics implementation consortium. However, there is a scarcity of large-scale real-world data on the extent of this pharmacogenetic effect, and clinical testing for the CYP2C19 genotype remains infrequent. This study utilizes the UK Biobank dataset, including 10 365 patients treated with clopidogrel, to offer the largest observational analysis of these pharmacogenetic effects to date.</p><p><strong>Methods: </strong>Incorporating time-varying drug exposure and repeated clinical outcome, we adopted semiparametric frailty models to detect and quantify exposure-based effects of CYP2C19 (*2,*17) variants and nongenetic factors on the incidence risks of composite outcomes of death or recurrent hospitalizations due to major adverse cardiovascular events (MACE) or hemorrhage in the entire cohort of clopidogrel-treated patients.</p><p><strong>Results: </strong>Out of the 10 365 clopidogrel-treated patients, 40% (4115) experienced 10 625 MACE events during an average follow-up of 9.23 years. Individuals who received clopidogrel (coverage >25%) with a CYP2C19*2 loss-of-function allele had a 9.4% higher incidence of MACE [incidence rate ratios (IRR), 1.094; 1.044-1.146], but a 15% lower incidence of hemorrhage (IRR, 0.849; 0.712-0.996). These effects were stronger with high clopidogrel exposure. Conversely, the gain-of-function CYP2C19*17 variant was associated with a 5.3% lower incidence of MACE (IRR, 0.947; 0.903-0.983). Notably, there was no evidence of *2 or *17 effects when clopidogrel exposure was low, confirming the presence of a drug-gene interaction.</p><p><strong>Conclusion: </strong>The impact of CYP2C19 on clinical outcomes in clopidogrel-treated patients is substantial, highlighting the importance of incorporating genotype-based prescribing into clinical practice, regardless of the reason for clopidogrel use or the duration of treatment. Moreover, the methodology introduced in this study can be applied to further real-world investigations of known drug-gene and drug-drug interactions and the discovery of novel interactions.</p>\",\"PeriodicalId\":19763,\"journal\":{\"name\":\"Pharmacogenetics and genomics\",\"volume\":\" \",\"pages\":\"73-82\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenetics and genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FPC.0000000000000519\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000519","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:CYP2C19 基因型对氯吡格雷疗效的影响是最成熟的药物遗传学相互作用之一,有可靠的证据支持,并得到了美国食品药品管理局和临床药物遗传学实施联盟的推荐。然而,关于这种药物遗传学影响程度的大规模真实世界数据却非常稀少,而且 CYP2C19 基因型的临床检测仍然不常见。本研究利用英国生物库数据集(包括10 365名接受氯吡格雷治疗的患者)对这些药物遗传效应进行了迄今为止最大规模的观察分析:结合时变药物暴露和重复临床结果,我们采用半参数虚弱模型来检测和量化CYP2C19(*2,*17)变异和非遗传因素对整个氯吡格雷治疗患者队列中死亡或因主要不良心血管事件(MACE)或出血导致的复发性住院等复合结局的发生风险的基于暴露的影响:在接受氯吡格雷治疗的10 365名患者中,有40%(4115人)在平均9.23年的随访期间经历了10 625次MACE事件。接受氯吡格雷治疗(覆盖率>25%)且CYP2C19*2等位基因缺失者的MACE发生率高9.4%[发生率比(IRR),1.094;1.044-1.146],但出血发生率低15%(IRR,0.849;0.712-0.996)。氯吡格雷暴露量越高,上述效应越强。相反,功能增益型 CYP2C19*17 变异与 MACE 发生率降低 5.3% 相关(IRR,0.947;0.903-0.983)。值得注意的是,当氯吡格雷暴露量较低时,没有证据表明*2或*17会产生影响,这证实了药物与基因之间存在相互作用:结论:CYP2C19 对接受氯吡格雷治疗的患者的临床结果有很大影响,这凸显了将基于基因型的处方纳入临床实践的重要性,无论使用氯吡格雷的原因或治疗时间长短。此外,本研究中介绍的方法还可应用于已知药物-基因和药物-药物相互作用的进一步实际调查以及新型相互作用的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmacogenetics at scale in real-world bioresources: CYP2C19 and clopidogrel outcomes in UK Biobank.

Objective: The impact of CYP2C19 genotype on clopidogrel outcomes is one of the most well established pharmacogenetic interactions, supported by robust evidence and recommended by the Food and Drug Administration and clinical pharmacogenetics implementation consortium. However, there is a scarcity of large-scale real-world data on the extent of this pharmacogenetic effect, and clinical testing for the CYP2C19 genotype remains infrequent. This study utilizes the UK Biobank dataset, including 10 365 patients treated with clopidogrel, to offer the largest observational analysis of these pharmacogenetic effects to date.

Methods: Incorporating time-varying drug exposure and repeated clinical outcome, we adopted semiparametric frailty models to detect and quantify exposure-based effects of CYP2C19 (*2,*17) variants and nongenetic factors on the incidence risks of composite outcomes of death or recurrent hospitalizations due to major adverse cardiovascular events (MACE) or hemorrhage in the entire cohort of clopidogrel-treated patients.

Results: Out of the 10 365 clopidogrel-treated patients, 40% (4115) experienced 10 625 MACE events during an average follow-up of 9.23 years. Individuals who received clopidogrel (coverage >25%) with a CYP2C19*2 loss-of-function allele had a 9.4% higher incidence of MACE [incidence rate ratios (IRR), 1.094; 1.044-1.146], but a 15% lower incidence of hemorrhage (IRR, 0.849; 0.712-0.996). These effects were stronger with high clopidogrel exposure. Conversely, the gain-of-function CYP2C19*17 variant was associated with a 5.3% lower incidence of MACE (IRR, 0.947; 0.903-0.983). Notably, there was no evidence of *2 or *17 effects when clopidogrel exposure was low, confirming the presence of a drug-gene interaction.

Conclusion: The impact of CYP2C19 on clinical outcomes in clopidogrel-treated patients is substantial, highlighting the importance of incorporating genotype-based prescribing into clinical practice, regardless of the reason for clopidogrel use or the duration of treatment. Moreover, the methodology introduced in this study can be applied to further real-world investigations of known drug-gene and drug-drug interactions and the discovery of novel interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacogenetics and genomics
Pharmacogenetics and genomics 医学-生物工程与应用微生物
CiteScore
3.20
自引率
3.80%
发文量
47
审稿时长
3 months
期刊介绍: ​​​​Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信