Mehdi Joodaki, Mina Shaigan, Victor Parra, Roman D Bülow, Christoph Kuppe, David L Hölscher, Mingbo Cheng, James S Nagai, Michaël Goedertier, Nassim Bouteldja, Vladimir Tesar, Jonathan Barratt, Ian Sd Roberts, Rosanna Coppo, Rafael Kramann, Peter Boor, Ivan G Costa
{"title":"利用优化传输(PILOT)从单细胞基因组学和病理组学数据中检测专利级距离。","authors":"Mehdi Joodaki, Mina Shaigan, Victor Parra, Roman D Bülow, Christoph Kuppe, David L Hölscher, Mingbo Cheng, James S Nagai, Michaël Goedertier, Nassim Bouteldja, Vladimir Tesar, Jonathan Barratt, Ian Sd Roberts, Rosanna Coppo, Rafael Kramann, Peter Boor, Ivan G Costa","doi":"10.1038/s44320-023-00003-8","DOIUrl":null,"url":null,"abstract":"<p><p>Although clinical applications represent the next challenge in single-cell genomics and digital pathology, we still lack computational methods to analyze single-cell or pathomics data to find sample-level trajectories or clusters associated with diseases. This remains challenging as single-cell/pathomics data are multi-scale, i.e., a sample is represented by clusters of cells/structures, and samples cannot be easily compared with each other. Here we propose PatIent Level analysis with Optimal Transport (PILOT). PILOT uses optimal transport to compute the Wasserstein distance between two individual single-cell samples. This allows us to perform unsupervised analysis at the sample level and uncover trajectories or cellular clusters associated with disease progression. We evaluate PILOT and competing approaches in single-cell genomics or pathomics studies involving various human diseases with up to 600 samples/patients and millions of cells or tissue structures. Our results demonstrate that PILOT detects disease-associated samples from large and complex single-cell or pathomics data. Moreover, PILOT provides a statistical approach to find changes in cell populations, gene expression, and tissue structures related to the trajectories or clusters supporting interpretation of predictions.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"57-74"},"PeriodicalIF":8.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883279/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detection of PatIent-Level distances from single cell genomics and pathomics data with Optimal Transport (PILOT).\",\"authors\":\"Mehdi Joodaki, Mina Shaigan, Victor Parra, Roman D Bülow, Christoph Kuppe, David L Hölscher, Mingbo Cheng, James S Nagai, Michaël Goedertier, Nassim Bouteldja, Vladimir Tesar, Jonathan Barratt, Ian Sd Roberts, Rosanna Coppo, Rafael Kramann, Peter Boor, Ivan G Costa\",\"doi\":\"10.1038/s44320-023-00003-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although clinical applications represent the next challenge in single-cell genomics and digital pathology, we still lack computational methods to analyze single-cell or pathomics data to find sample-level trajectories or clusters associated with diseases. This remains challenging as single-cell/pathomics data are multi-scale, i.e., a sample is represented by clusters of cells/structures, and samples cannot be easily compared with each other. Here we propose PatIent Level analysis with Optimal Transport (PILOT). PILOT uses optimal transport to compute the Wasserstein distance between two individual single-cell samples. This allows us to perform unsupervised analysis at the sample level and uncover trajectories or cellular clusters associated with disease progression. We evaluate PILOT and competing approaches in single-cell genomics or pathomics studies involving various human diseases with up to 600 samples/patients and millions of cells or tissue structures. Our results demonstrate that PILOT detects disease-associated samples from large and complex single-cell or pathomics data. Moreover, PILOT provides a statistical approach to find changes in cell populations, gene expression, and tissue structures related to the trajectories or clusters supporting interpretation of predictions.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"57-74\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883279/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-023-00003-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-023-00003-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
虽然临床应用是单细胞基因组学和数字病理学的下一个挑战,但我们仍然缺乏分析单细胞或病理组学数据的计算方法,以找到与疾病相关的样本级轨迹或集群。这仍然具有挑战性,因为单细胞/病理组学数据是多尺度的,即样本由细胞/结构集群表示,样本之间不易比较。在此,我们提出了采用最优传输技术的实体级分析(PILOT)。PILOT 使用最优传输计算两个单细胞样本之间的瓦瑟斯坦距离。这样,我们就能在样本水平上进行无监督分析,发现与疾病进展相关的轨迹或细胞集群。我们在涉及各种人类疾病的单细胞基因组学或病理组学研究中评估了 PILOT 和其他竞争方法,这些研究涉及多达 600 个样本/患者和数百万个细胞或组织结构。结果表明,PILOT 能从大量复杂的单细胞或病理组学数据中检测出疾病相关样本。此外,PILOT 还提供了一种统计方法,用于发现与轨迹或集群相关的细胞群、基因表达和组织结构的变化,从而支持对预测结果的解释。
Detection of PatIent-Level distances from single cell genomics and pathomics data with Optimal Transport (PILOT).
Although clinical applications represent the next challenge in single-cell genomics and digital pathology, we still lack computational methods to analyze single-cell or pathomics data to find sample-level trajectories or clusters associated with diseases. This remains challenging as single-cell/pathomics data are multi-scale, i.e., a sample is represented by clusters of cells/structures, and samples cannot be easily compared with each other. Here we propose PatIent Level analysis with Optimal Transport (PILOT). PILOT uses optimal transport to compute the Wasserstein distance between two individual single-cell samples. This allows us to perform unsupervised analysis at the sample level and uncover trajectories or cellular clusters associated with disease progression. We evaluate PILOT and competing approaches in single-cell genomics or pathomics studies involving various human diseases with up to 600 samples/patients and millions of cells or tissue structures. Our results demonstrate that PILOT detects disease-associated samples from large and complex single-cell or pathomics data. Moreover, PILOT provides a statistical approach to find changes in cell populations, gene expression, and tissue structures related to the trajectories or clusters supporting interpretation of predictions.
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.