Lea Wiedmann, Jack Blumenau, Orlagh Carroll, John Cairns
{"title":"使用自动文本分类来探索罕见病药物良好评价中的不确定性。","authors":"Lea Wiedmann, Jack Blumenau, Orlagh Carroll, John Cairns","doi":"10.1017/S0266462323002805","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study examined the application, feasibility, and validity of supervised learning models for text classification in appraisals for rare disease treatments (RDTs) in relation to uncertainty, and analyzed differences between appraisals based on the classification results.</p><p><strong>Methods: </strong>We analyzed appraisals for RDTs (<i>n</i> = 94) published by the National Institute for Health and Care Excellence (NICE) between January 2011 and May 2023. We used Naïve Bayes, Lasso, and Support Vector Machine models in a binary text classification task (classifying paragraphs as either referencing uncertainty in the evidence base or not). To illustrate the results, we tested hypotheses in relation to the appraisal guidance, advanced therapy medicinal product (ATMP) status, disease area, and age group.</p><p><strong>Results: </strong>The best performing (Lasso) model achieved 83.6 percent classification accuracy (sensitivity = 74.4 percent, specificity = 92.6 percent). Paragraphs classified as referencing uncertainty were significantly more likely to arise in highly specialized technology (HST) appraisals compared to appraisals from the technology appraisal (TA) guidance (adjusted odds ratio = 1.44, 95 percent CI 1.09, 1.90, <i>p</i> = 0.004). There was no significant association between paragraphs classified as referencing uncertainty and appraisals for ATMPs, non-oncology RDTs, and RDTs indicated for children only or adults and children. These results were robust to the threshold value used for classifying paragraphs but were sensitive to the choice of classification model.</p><p><strong>Conclusion: </strong>Using supervised learning models for text classification in NICE appraisals for RDTs is feasible, but the results of downstream analyses may be sensitive to the choice of classification model.</p>","PeriodicalId":14467,"journal":{"name":"International Journal of Technology Assessment in Health Care","volume":" ","pages":"e5"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10859832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using automated text classification to explore uncertainty in NICE appraisals for drugs for rare diseases.\",\"authors\":\"Lea Wiedmann, Jack Blumenau, Orlagh Carroll, John Cairns\",\"doi\":\"10.1017/S0266462323002805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study examined the application, feasibility, and validity of supervised learning models for text classification in appraisals for rare disease treatments (RDTs) in relation to uncertainty, and analyzed differences between appraisals based on the classification results.</p><p><strong>Methods: </strong>We analyzed appraisals for RDTs (<i>n</i> = 94) published by the National Institute for Health and Care Excellence (NICE) between January 2011 and May 2023. We used Naïve Bayes, Lasso, and Support Vector Machine models in a binary text classification task (classifying paragraphs as either referencing uncertainty in the evidence base or not). To illustrate the results, we tested hypotheses in relation to the appraisal guidance, advanced therapy medicinal product (ATMP) status, disease area, and age group.</p><p><strong>Results: </strong>The best performing (Lasso) model achieved 83.6 percent classification accuracy (sensitivity = 74.4 percent, specificity = 92.6 percent). Paragraphs classified as referencing uncertainty were significantly more likely to arise in highly specialized technology (HST) appraisals compared to appraisals from the technology appraisal (TA) guidance (adjusted odds ratio = 1.44, 95 percent CI 1.09, 1.90, <i>p</i> = 0.004). There was no significant association between paragraphs classified as referencing uncertainty and appraisals for ATMPs, non-oncology RDTs, and RDTs indicated for children only or adults and children. These results were robust to the threshold value used for classifying paragraphs but were sensitive to the choice of classification model.</p><p><strong>Conclusion: </strong>Using supervised learning models for text classification in NICE appraisals for RDTs is feasible, but the results of downstream analyses may be sensitive to the choice of classification model.</p>\",\"PeriodicalId\":14467,\"journal\":{\"name\":\"International Journal of Technology Assessment in Health Care\",\"volume\":\" \",\"pages\":\"e5\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10859832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Technology Assessment in Health Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0266462323002805\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Technology Assessment in Health Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0266462323002805","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Using automated text classification to explore uncertainty in NICE appraisals for drugs for rare diseases.
Objective: This study examined the application, feasibility, and validity of supervised learning models for text classification in appraisals for rare disease treatments (RDTs) in relation to uncertainty, and analyzed differences between appraisals based on the classification results.
Methods: We analyzed appraisals for RDTs (n = 94) published by the National Institute for Health and Care Excellence (NICE) between January 2011 and May 2023. We used Naïve Bayes, Lasso, and Support Vector Machine models in a binary text classification task (classifying paragraphs as either referencing uncertainty in the evidence base or not). To illustrate the results, we tested hypotheses in relation to the appraisal guidance, advanced therapy medicinal product (ATMP) status, disease area, and age group.
Results: The best performing (Lasso) model achieved 83.6 percent classification accuracy (sensitivity = 74.4 percent, specificity = 92.6 percent). Paragraphs classified as referencing uncertainty were significantly more likely to arise in highly specialized technology (HST) appraisals compared to appraisals from the technology appraisal (TA) guidance (adjusted odds ratio = 1.44, 95 percent CI 1.09, 1.90, p = 0.004). There was no significant association between paragraphs classified as referencing uncertainty and appraisals for ATMPs, non-oncology RDTs, and RDTs indicated for children only or adults and children. These results were robust to the threshold value used for classifying paragraphs but were sensitive to the choice of classification model.
Conclusion: Using supervised learning models for text classification in NICE appraisals for RDTs is feasible, but the results of downstream analyses may be sensitive to the choice of classification model.
期刊介绍:
International Journal of Technology Assessment in Health Care serves as a forum for the wide range of health policy makers and professionals interested in the economic, social, ethical, medical and public health implications of health technology. It covers the development, evaluation, diffusion and use of health technology, as well as its impact on the organization and management of health care systems and public health. In addition to general essays and research reports, regular columns on technology assessment reports and thematic sections are published.