可分刚性群中的通用类型和通用元素

IF 0.4 3区 数学 Q4 LOGIC
A. G. Myasnikov, N. S. Romanovskii
{"title":"可分刚性群中的通用类型和通用元素","authors":"A. G. Myasnikov,&nbsp;N. S. Romanovskii","doi":"10.1007/s10469-023-09726-x","DOIUrl":null,"url":null,"abstract":"<p>A group <i>G</i> is said to be m-rigid if it contains a normal series of the form <i>G</i> = <i>G</i><sub>1</sub> &gt; <i>G</i><sub>2</sub> &gt; . . . &gt; <i>G</i><sub><i>m</i></sub> &gt; <i>G</i><sub><i>m+</i>1</sub> = 1, whose quotients <i>G</i><sub><i>i</i></sub>/<i>G</i><sub><i>i+</i>1</sub> are Abelian and, treated as (right) ℤ[<i>G</i>/<i>G</i><sub><i>i</i></sub>]-modules, are torsion-free. A rigid group <i>G</i> is said to be divisible if elements of the quotient <i>ρ</i><sub><i>i</i></sub>(<i>G</i>)/<i>ρ</i><sub><i>i+</i>1</sub>(<i>G</i>) are divisible by nonzero elements of the ring ℤ[<i>G</i>/<i>ρ</i><sub><i>i</i></sub>(<i>G</i>)]. Previously, it was proved that the theory of divisible m-rigid groups is complete and ω-stable. In the present paper, we give an algebraic description of elements and types that are generic over a divisible m-rigid group <i>G</i>.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generic Types and Generic Elements in Divisible Rigid Groups\",\"authors\":\"A. G. Myasnikov,&nbsp;N. S. Romanovskii\",\"doi\":\"10.1007/s10469-023-09726-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A group <i>G</i> is said to be m-rigid if it contains a normal series of the form <i>G</i> = <i>G</i><sub>1</sub> &gt; <i>G</i><sub>2</sub> &gt; . . . &gt; <i>G</i><sub><i>m</i></sub> &gt; <i>G</i><sub><i>m+</i>1</sub> = 1, whose quotients <i>G</i><sub><i>i</i></sub>/<i>G</i><sub><i>i+</i>1</sub> are Abelian and, treated as (right) ℤ[<i>G</i>/<i>G</i><sub><i>i</i></sub>]-modules, are torsion-free. A rigid group <i>G</i> is said to be divisible if elements of the quotient <i>ρ</i><sub><i>i</i></sub>(<i>G</i>)/<i>ρ</i><sub><i>i+</i>1</sub>(<i>G</i>) are divisible by nonzero elements of the ring ℤ[<i>G</i>/<i>ρ</i><sub><i>i</i></sub>(<i>G</i>)]. Previously, it was proved that the theory of divisible m-rigid groups is complete and ω-stable. In the present paper, we give an algebraic description of elements and types that are generic over a divisible m-rigid group <i>G</i>.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-023-09726-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-023-09726-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

如果一个群 G 包含一个形式为 G = G1 > G2 > ... > Gm > Gm+1 = 1 的正序列,其商数 Gi/Gi+1 是阿贝尔的,并且作为(右)ℤ[G/Gi]模块处理时是无扭的,那么这个群 G 可以说是 m 刚群。如果商ρi(G)/ρi+1(G)中的元素能被ℤ[G/ρi(G)]环中的非零元素整除,则称刚性群 G 是可分的。在此之前,我们已经证明了可分 m-rigid 群理论是完整且 ω 稳定的。在本文中,我们给出了可分 m-rigid 群 G 上通用元素和类型的代数描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic Types and Generic Elements in Divisible Rigid Groups

A group G is said to be m-rigid if it contains a normal series of the form G = G1 > G2 > . . . > Gm > Gm+1 = 1, whose quotients Gi/Gi+1 are Abelian and, treated as (right) ℤ[G/Gi]-modules, are torsion-free. A rigid group G is said to be divisible if elements of the quotient ρi(G)/ρi+1(G) are divisible by nonzero elements of the ring ℤ[G/ρi(G)]. Previously, it was proved that the theory of divisible m-rigid groups is complete and ω-stable. In the present paper, we give an algebraic description of elements and types that are generic over a divisible m-rigid group G.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信