利用模拟拮抗酶来帮助对 pH 值和 PVA-硼酸盐凝胶进行时间编程

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Nadeem Bashir, Anna S. Leathard, Madeline McHugh, Imogen Hoffman, Fahima Shaon, Jorge A. Belgodere, Annette F. Taylor and John A. Pojman
{"title":"利用模拟拮抗酶来帮助对 pH 值和 PVA-硼酸盐凝胶进行时间编程","authors":"Nadeem Bashir, Anna S. Leathard, Madeline McHugh, Imogen Hoffman, Fahima Shaon, Jorge A. Belgodere, Annette F. Taylor and John A. Pojman","doi":"10.1039/D3ME00138E","DOIUrl":null,"url":null,"abstract":"<p >Feedback through enzyme reactions creates new possibilities for the temporal programming of material properties in bioinspired applications, such as transient adhesives; however, there have been limited attempts to model such behavior. Here, we used two antagonistic enzymes, urease in watermelon seed powder and esterase, to temporally control the gelation of a poly(vinyl alcohol)–borate hydrogel in a one-pot formulation. Urease produces base (ammonia), and esterase produces acid (acetic acid), generating a pH pulse, which was coupled with reversible complexation of PVA. For improved understanding of the pulse properties and gel lifetime, the pH profile was investigated by comparison of the experiments with kinetic simulations of the enzyme reactions and relevant equilibria. The model reproduced the general trends with the initial concentrations and was used to help identify conditions for pulse-like behaviour as the substrate concentrations were varied.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 4","pages":" 372-381"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/me/d3me00138e?page=search","citationCount":"0","resultStr":"{\"title\":\"On the use of modelling antagonistic enzymes to aid in temporal programming of pH and PVA–borate gelation†\",\"authors\":\"Nadeem Bashir, Anna S. Leathard, Madeline McHugh, Imogen Hoffman, Fahima Shaon, Jorge A. Belgodere, Annette F. Taylor and John A. Pojman\",\"doi\":\"10.1039/D3ME00138E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Feedback through enzyme reactions creates new possibilities for the temporal programming of material properties in bioinspired applications, such as transient adhesives; however, there have been limited attempts to model such behavior. Here, we used two antagonistic enzymes, urease in watermelon seed powder and esterase, to temporally control the gelation of a poly(vinyl alcohol)–borate hydrogel in a one-pot formulation. Urease produces base (ammonia), and esterase produces acid (acetic acid), generating a pH pulse, which was coupled with reversible complexation of PVA. For improved understanding of the pulse properties and gel lifetime, the pH profile was investigated by comparison of the experiments with kinetic simulations of the enzyme reactions and relevant equilibria. The model reproduced the general trends with the initial concentrations and was used to help identify conditions for pulse-like behaviour as the substrate concentrations were varied.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 4\",\"pages\":\" 372-381\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/me/d3me00138e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00138e\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00138e","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过酶反应的反馈为生物启发应用中材料特性的时间编程创造了新的可能性,例如瞬时粘合剂;然而,对这种行为建模的尝试还很有限。在这里,我们使用两种拮抗酶,即西瓜籽粉中的脲酶和酯酶,在一锅配方中对聚乙烯醇-硼酸盐水凝胶的凝胶化进行时间控制。脲酶产生碱(氨),酯酶产生酸(乙酸),从而产生 pH 值脉冲,并与 PVA 的可逆络合结合。为了更好地了解脉冲特性和凝胶寿命,通过将实验与酶反应动力学模拟和相关平衡进行比较,对 pH 曲线进行了研究。该模型再现了初始浓度的一般趋势,并用于帮助确定在底物浓度变化时产生类似脉冲行为的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the use of modelling antagonistic enzymes to aid in temporal programming of pH and PVA–borate gelation†

On the use of modelling antagonistic enzymes to aid in temporal programming of pH and PVA–borate gelation†

On the use of modelling antagonistic enzymes to aid in temporal programming of pH and PVA–borate gelation†

Feedback through enzyme reactions creates new possibilities for the temporal programming of material properties in bioinspired applications, such as transient adhesives; however, there have been limited attempts to model such behavior. Here, we used two antagonistic enzymes, urease in watermelon seed powder and esterase, to temporally control the gelation of a poly(vinyl alcohol)–borate hydrogel in a one-pot formulation. Urease produces base (ammonia), and esterase produces acid (acetic acid), generating a pH pulse, which was coupled with reversible complexation of PVA. For improved understanding of the pulse properties and gel lifetime, the pH profile was investigated by comparison of the experiments with kinetic simulations of the enzyme reactions and relevant equilibria. The model reproduced the general trends with the initial concentrations and was used to help identify conditions for pulse-like behaviour as the substrate concentrations were varied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信