通过绝对复杂性确定法诺型变种和投影空间的特征

IF 0.5 4区 数学 Q3 MATHEMATICS
Dae-Won Lee
{"title":"通过绝对复杂性确定法诺型变种和投影空间的特征","authors":"Dae-Won Lee","doi":"10.1007/s00229-023-01526-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we obtain several characterizations of varieties of Fano type and projective spaces via absolute complexity. Also, we show that if the absolute complexity of a given pair <span>\\((X,\\Delta )\\)</span> is negative, then the pair <span>\\((X,\\Delta )\\)</span> does not admit any <span>\\(-(K_X+\\Delta )\\)</span>-minimal models.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"79 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of Fano type varieties and projective spaces via absolute complexity\",\"authors\":\"Dae-Won Lee\",\"doi\":\"10.1007/s00229-023-01526-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we obtain several characterizations of varieties of Fano type and projective spaces via absolute complexity. Also, we show that if the absolute complexity of a given pair <span>\\\\((X,\\\\Delta )\\\\)</span> is negative, then the pair <span>\\\\((X,\\\\Delta )\\\\)</span> does not admit any <span>\\\\(-(K_X+\\\\Delta )\\\\)</span>-minimal models.</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-023-01526-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-023-01526-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过绝对复杂性得到了法诺型变种和投影空间的几个特征。同时,我们还证明了如果给定的一对 \((X,\Delta )\) 的绝对复杂度是负的,那么这对\((X,\Delta )\)不允许任何\(-(K_X+\Delta )\)-最小模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of Fano type varieties and projective spaces via absolute complexity

In this paper, we obtain several characterizations of varieties of Fano type and projective spaces via absolute complexity. Also, we show that if the absolute complexity of a given pair \((X,\Delta )\) is negative, then the pair \((X,\Delta )\) does not admit any \(-(K_X+\Delta )\)-minimal models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信